import cv2 import numpy as np import gradio as gr # Define a blurring function. def blur(face, factor=3): h, w = face.shape[:2] if factor < 1: factor = 1 # Maximum blurring if factor > 5: factor = 5 # Minimal blurring # Kernel size. w_k = int(w / factor) h_k = int(h / factor) # Insure kernel is an odd number. if w_k % 2 == 0: w_k += 1 if h_k % 2 == 0: h_k += 1 blurred = cv2.GaussianBlur(face, (int(w_k), int(h_k)), 0, 0) return blurred def pixelate(roi, pixels=16): # Size of region to pixelate. roi_h, roi_w = roi.shape[:2] if roi_h > pixels and roi_w > pixels: # Resize input ROI to the (small) pixelated size. roi_small = cv2.resize(roi, (pixels, pixels), interpolation=cv2.INTER_LINEAR) # Now enlarge the pixelated ROI to fill the size of the original ROI. roi_pixelated = cv2.resize(roi_small, (roi_w, roi_h), interpolation=cv2.INTER_NEAREST) else: roi_pixelated = roi return roi_pixelated def face_blur_ellipse_pixelate(image, net, detect_threshold=0.9, factor=3, pixels=10, write_mask=False): img = image.copy() img_out = img.copy() elliptical_mask = np.zeros(img.shape, dtype=img.dtype) # Prepare image and perform inference. blob = cv2.dnn.blobFromImage(img, scalefactor=1.0, size=(300, 300), mean=[104, 117, 123]) net.setInput(blob) detections = net.forward() h, w = img.shape[:2] for i in range(detections.shape[2]): confidence = detections[0, 0, i, 2] if confidence > detect_threshold: # Extract the bounding box coordinates from the detection. box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) (x1, y1, x2, y2) = box # The face is defined by the bounding rectangle from the detection. face = img[int(y1) : int(y2), int(x1) : int(x2), :] # Blur the rectangular area defined by the bounding box. face = blur(face, factor=factor) # Pixelate the blurred face. face = pixelate(face, pixels=pixels) # Copy the blurred/pixelated face to the output image. img_out[int(y1) : int(y2), int(x1) : int(x2), :] = face # Specify the elliptical parameters directly from the bounding box coordinates. e_center = (x1 + (x2 - x1) / 2, y1 + (y2 - y1) / 2) e_size = (x2 - x1, y2 - y1) e_angle = 0.0 # Create an elliptical mask. elliptical_mask = cv2.ellipse( elliptical_mask, (e_center, e_size, e_angle), (255, 255, 255), -1, cv2.LINE_AA ) # Apply the elliptical mask. np.putmask(img, elliptical_mask, img_out) if write_mask: cv2.imwrite("elliptical_mask.jpg", elliptical_mask) return img # img1_epb = face_blur_ellipse_pixelate(img1, net, factor=3.5, pixels=15) # img2_epb = face_blur_ellipse_pixelate(img2, net, factor=2, pixels=10) # cv2.imshow('image-out', img1_epb) # cv2.waitKey(0) # cv2.imshow('image-out', img2_epb) # cv2.waitKey(0) # cv2.destroyAllWindows() def process_video(input_video_path, detect_threshold=0.9, blur_factor=3, pixel_size=10): # Load the DNN model. modelFile = "./model/res10_300x300_ssd_iter_140000.caffemodel" configFile = "./model/deploy.prototxt" # Read the model and create a network object. net = cv2.dnn.readNetFromCaffe(prototxt=configFile, caffeModel=modelFile) # Initialize video capture. cap = cv2.VideoCapture(input_video_path) if not cap.isOpened(): print(f"Error: Cannot open video file {input_video_path}") return # Get video properties. fps = cap.get(cv2.CAP_PROP_FPS) width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) fourcc = cv2.VideoWriter_fourcc(*"mp4v") # You can change the codec as needed. output_video_path = "output_video.mp4" # Initialize video writer. out = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height)) frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) current_frame = 0 print(f"Processing video... Total frames: {frame_count}") while True: ret, frame = cap.read() if not ret: break # Process the frame. processed_frame = face_blur_ellipse_pixelate(frame, net, detect_threshold, blur_factor, pixel_size) # cv2.imshow('output', processed_frame) # Write the processed frame to the output video. out.write(processed_frame) current_frame += 1 if current_frame % 30 == 0 or current_frame == frame_count: print(f"Processed {current_frame}/{frame_count} frames") # Release resources. cap.release() out.release() print(f"Processing complete. Output saved to {output_video_path}") return output_video_path # input_video = "./input-video.mp4" # process_video(input_video) # Define the Gradio interface iface = gr.Interface( fn=process_video, inputs=[ gr.Video(label="Input Video", autoplay=True), gr.Slider(minimum=0.5, maximum=0.99, value=0.9, label="Detection Confidence Threshold"), gr.Slider(minimum=1, maximum=5, step=0.5, value=3, label="Blur Factor"), gr.Slider(minimum=5, maximum=50, step=1, value=10, label="Pixelation Size"), ], outputs=[gr.Video(label="Processed Video", autoplay=True)], title="Face Blurring with OpenCV", description="Upload a video file (MP4 or AVI). The app will detect faces, blur and pixelate them, and provide a processed video for download.", examples=[["./input-video.mp4", 0.9, 3, 10], ["./man-woman.mp4", 0.85, 4, 12]], cache_examples=False, ) if __name__ == "__main__": iface.launch()