Spaces:
Runtime error
Runtime error
File size: 6,316 Bytes
6c0d323 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
"""Application to demo inpainting, Median and Bilateral Blur using streamlit.
Run using: streamlit run 10_04_image_restoration_app.py
"""
import streamlit as st
import pathlib
from streamlit_drawable_canvas import st_canvas
import cv2
import numpy as np
import io
import base64
from PIL import Image
# # Function to create a download link for output image
# def get_image_download_link(img, filename, text):
# """Generates a link to download a particular image file."""
# buffered = io.BytesIO()
# img.save(buffered, format='JPEG')
# img_str = base64.b64encode(buffered.getvalue()).decode()
# href = f'<a href="data:file/txt;base64,{img_str}" download="{filename}">{text}</a>'
# return href
# Set title.
st.sidebar.title('Image Restoration App with OpenCV')
# Description
st.sidebar.text('Upload an image and apply various restoration techniques.')
# Specify canvas parameters in application
uploaded_file = st.sidebar.file_uploader("Upload Image to restore:", type=["png", "jpg"])
image = None
res = None
if uploaded_file is not None:
# Convert the file to an opencv image.
file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
image = cv2.imdecode(file_bytes, 1)
# Display the uploaded image
st.subheader("Original Image")
st.image(image[:, :, ::-1])
# Display a selection box for choosing the filter to apply.
option = st.sidebar.selectbox('Median or Bilateral Blur or Inpaint?', ('None', 'Median Blur', 'Bilateral Blur', 'Image Inpaint'))
if option == 'Median Blur':
ksize = st.sidebar.slider("ksize: ", 3, 15, 5, 2)
image = cv2.medianBlur(image, ksize)
res=image[:,:,::-1]
st.subheader("Median Blurred Image")
st.image(res)
# Display download button
result = Image.fromarray(res)
buffered = io.BytesIO()
result.save(buffered, format="PNG")
img_bytes = buffered.getvalue()
st.download_button(label='Download Output', data=img_bytes, file_name='median_blur_output.png', mime='image/png')
elif option == 'Bilateral Blur':
dia = st.sidebar.slider("diameter: ", 1, 50, 20)
sigmaColor = st.sidebar.slider("sigmaColor: ", 0, 250, 200, 10)
sigmaSpace = st.sidebar.slider("sigmaSpace: ", 0, 250, 100, 10)
image = cv2.bilateralFilter(image, dia, sigmaColor, sigmaSpace)
res=image[:,:,::-1]
st.subheader("Bilateral Blurred Image")
st.image(res)
# Display download button
result = Image.fromarray(res)
buffered = io.BytesIO()
result.save(buffered, format="PNG")
img_bytes = buffered.getvalue()
st.download_button(label='Download Output', data=img_bytes, file_name='bilateral_blur_output.png', mime='image/png')
elif option == 'Image Inpaint':
stroke_width = st.sidebar.slider("Stroke width: ", 1, 25, 5)
h, w = image.shape[:2]
if w > 800:
h_, w_ = int(h * 800 / w), 800
else:
h_, w_ = h, w
# Create a canvas component.
st.subheader("Draw over the areas you want to inpaint:")
canvas_result = st_canvas(
fill_color='white',
stroke_width=stroke_width,
stroke_color='black',
background_image=Image.open(uploaded_file).resize((h_, w_)),
update_streamlit=True,
height=h_,
width=w_,
drawing_mode='freedraw',
key="canvas",
)
stroke = canvas_result.image_data
if stroke is not None:
if st.sidebar.checkbox('show mask'):
st.subheader("Mask")
st.image(stroke)
mask = cv2.split(stroke)[3]
mask = np.uint8(mask)
mask = cv2.resize(mask, (w, h))
st.sidebar.caption('Happy with the selection?')
option = st.sidebar.selectbox('Mode', ['None', 'Telea', 'NS', 'Compare both'])
if option == 'Telea':
st.subheader('Result of Telea')
res = cv2.inpaint(src=image, inpaintMask=mask, inpaintRadius=3, flags=cv2.INPAINT_TELEA)[:,:,::-1]
st.image(res)
# Display download button
result = Image.fromarray(res)
buffered = io.BytesIO()
result.save(buffered, format="PNG")
img_bytes = buffered.getvalue()
st.download_button(label='Download Output', data=img_bytes, file_name='inpaint_telea_output.png', mime='image/png')
elif option == 'Compare both':
col1, col2 = st.columns(2)
res1 = cv2.inpaint(src=image, inpaintMask=mask, inpaintRadius=3, flags=cv2.INPAINT_TELEA)[:,:,::-1]
res2 = cv2.inpaint(src=image, inpaintMask=mask, inpaintRadius=3, flags=cv2.INPAINT_NS)[:,:,::-1]
with col1:
st.subheader('Result of Telea')
st.image(res1)
# Display download button
result1 = Image.fromarray(res1)
buffered1 = io.BytesIO()
result1.save(buffered1, format="PNG")
img_bytes1 = buffered1.getvalue()
st.download_button(label='Download Output', data=img_bytes1, file_name='inpaint_telea_output.png', mime='image/png')
with col2:
st.subheader('Result of NS')
st.image(res2)
# Display download button
result2 = Image.fromarray(res2)
buffered2 = io.BytesIO()
result2.save(buffered2, format="PNG")
img_bytes2 = buffered2.getvalue()
st.download_button(label='Download Output', data=img_bytes2, file_name='inpaint_ns_output.png', mime='image/png')
elif option == 'NS':
st.subheader('Result of NS')
res = cv2.inpaint(src=image, inpaintMask=mask, inpaintRadius=3, flags=cv2.INPAINT_NS)[:,:,::-1]
st.image(res)
# Display download button
result = Image.fromarray(res)
buffered = io.BytesIO()
result.save(buffered, format="PNG")
img_bytes = buffered.getvalue()
st.download_button(label='Download Output', data=img_bytes, file_name='inpaint_ns_output.png', mime='image/png')
else:
pass
|