File size: 7,929 Bytes
6c0d323
 
d60ad95
6c0d323
d60ad95
 
 
6c0d323
 
d60ad95
 
 
 
 
 
6c0d323
 
d60ad95
 
 
 
 
6c0d323
 
d60ad95
 
 
 
 
6c0d323
 
d60ad95
 
 
6c0d323
d60ad95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c0d323
 
d60ad95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c0d323
d60ad95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c0d323
d60ad95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import streamlit as st
import numpy as np
import cv2
from PIL import Image
import io
import time
from streamlit_drawable_canvas import st_canvas


# Helper functions
def np_to_pil(np_img_bgr):
    if len(np_img_bgr.shape) == 2:
        return Image.fromarray(np_img_bgr)
    else:
        return Image.fromarray(np_img_bgr[..., ::-1])


def pil_to_np(pil_img):
    np_img_rgb = np.array(pil_img)
    if np_img_rgb.shape[-1] == 4:
        np_img_rgb = np_img_rgb[..., :3]
    return np_img_rgb[..., ::-1]


def download_button_img(np_img_bgr, label, filename):
    img = np_to_pil(np_img_bgr)
    buf = io.BytesIO()
    img.save(buf, format="PNG")
    st.download_button(label, data=buf.getvalue(), file_name=filename, mime="image/png")


# Set page config
st.set_page_config(page_title="Image Restoration App", layout="wide")
st.title("Image Restoration App")

# Upload section
st.sidebar.title("Upload Image")
uploaded_file = st.sidebar.file_uploader("Choose an image", type=["png", "jpg", "jpeg"])


if "orig_image" not in st.session_state:
    st.session_state.orig_image = None
if "current_image" not in st.session_state:
    st.session_state.current_image = None
if "inpaint_result" not in st.session_state:
    st.session_state.inpaint_result = None
if "canvas_result" not in st.session_state:
    st.session_state.canvas_result = None

if uploaded_file:
    file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
    image = cv2.imdecode(file_bytes, 1)
    st.session_state.orig_image = image
    st.session_state.current_image = image.copy()
    st.session_state.inpaint_result = None

if st.session_state.orig_image is None:
    st.info("Upload an image to get started.")
    st.stop()

# Tabs
tabs = st.tabs(["Filters", "Inpainting", "Compare"])

# FILTERS TAB
with tabs[0]:
    col1, col2 = st.columns([1, 2])
    with col1:
        st.subheader("Filters")
        filter_type = st.selectbox(
            "Choose filter:",
            ["None", "Gaussian", "Median", "Bilateral", "Brightness/Contrast", "Grayscale"],
            key="filter",
        )

        if filter_type == "Gaussian":
            ksize = st.slider("Kernel Size", 1, 31, 5, step=2, key="gauss_ksize")
            sigma = st.slider("Sigma X", 0.0, 10.0, 2.0, key="gauss_sigma")
        elif filter_type == "Median":
            ksize = st.slider("Kernel Size", 1, 31, 5, step=2, key="median_ksize")
        elif filter_type == "Bilateral":
            d = st.slider("Diameter", 1, 30, 9, key="bilateral_d")
            sigmaColor = st.slider("Sigma Color", 1, 150, 75, key="bilateral_color")
            sigmaSpace = st.slider("Sigma Space", 1, 150, 75, key="bilateral_space")
        elif filter_type == "Brightness/Contrast":
            brightness = st.slider("Brightness", -100, 100, 0, key="brightness")
            contrast = st.slider("Contrast", -100, 100, 0, key="contrast")

        if st.button("Apply Filter", key="apply_filter"):
            img = st.session_state.current_image.copy()
            if filter_type == "Gaussian":
                img = cv2.GaussianBlur(img, (ksize, ksize), sigma)
            elif filter_type == "Median":
                img = cv2.medianBlur(img, ksize)
            elif filter_type == "Bilateral":
                img = cv2.bilateralFilter(img, d, sigmaColor, sigmaSpace)
            elif filter_type == "Brightness/Contrast":
                img = cv2.convertScaleAbs(img, alpha=1 + contrast / 100.0, beta=brightness)
            elif filter_type == "Grayscale":
                img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
            st.session_state.current_image = img
            st.session_state.inpaint_result = None

        if st.button("Reset Image", key="reset_filter"):
            st.session_state.current_image = st.session_state.orig_image.copy()
            st.session_state.inpaint_result = None

    with col2:
        st.subheader("Image Preview")
        img = st.session_state.current_image
        st.image(img if len(img.shape) == 2 else img[..., ::-1], use_container_width=True)

# INPAINTING TAB
with tabs[1]:
    col1, col2, col3 = st.columns([1, 1.5, 1.5])

    with col1:
        st.subheader("Inpainting Settings")
        stroke_width = st.slider("Stroke Width", 1, 25, 5, key="stroke")
        method = st.selectbox("Inpainting Method", ["Telea", "NS"], key="inpaint_method")

        if st.button("Apply Inpaint", key="apply_inpaint"):
            canvas = st.session_state.get("canvas_result")
            if canvas and canvas.image_data is not None:
                mask_rgba = canvas.image_data
                if mask_rgba.shape[-1] == 4:
                    mask = mask_rgba[..., 3]
                    h, w = st.session_state.current_image.shape[:2]
                    mask = cv2.resize(mask, (w, h))
                    mask = (mask > 0).astype(np.uint8) * 255
                    flag = cv2.INPAINT_TELEA if method == "Telea" else cv2.INPAINT_NS
                    result = cv2.inpaint(st.session_state.current_image, mask, 3, flag)
                    st.session_state.inpaint_result = result

        if st.button("Reset to Original", key="reset_inpaint"):
            st.session_state.current_image = st.session_state.orig_image.copy()
            st.session_state.inpaint_result = None
        st.markdown("---")
        if st.button("Reset Canvas"):
            st.session_state.canvas_key = f"canvas_{int(time.time())}"

    with col2:
        st.subheader("Draw Mask")
        h, w = st.session_state.current_image.shape[:2]
        max_width = 500
        scale = min(1.0, max_width / w)
        canvas_w, canvas_h = int(w * scale), int(h * scale)

        show_mask = st.checkbox("Show Mask Preview", key="show_mask")

        if "canvas_key" not in st.session_state:
            st.session_state.canvas_key = "canvas"

        if not show_mask:
            pil_bg = np_to_pil(st.session_state.current_image).resize((canvas_w, canvas_h))
            canvas = st_canvas(
                fill_color="white",
                stroke_width=stroke_width,
                stroke_color="black",
                background_image=pil_bg,
                update_streamlit=True,
                height=canvas_h,
                width=canvas_w,
                drawing_mode="freedraw",
                key=st.session_state.canvas_key,
            )
            st.session_state.canvas_result = canvas
        else:
            canvas = st.session_state.get("canvas_result")
            if canvas and canvas.image_data is not None:
                mask = canvas.image_data[..., 3] if canvas.image_data.shape[-1] == 4 else None
                if mask is not None:
                    mask = cv2.resize(mask, (w, h))
                    mask = (mask > 0).astype(np.uint8) * 255
                    st.image(mask, caption="Inpainting Mask", use_container_width=True)

    with col3:
        st.subheader("Inpainting Result")
        result = st.session_state.inpaint_result
        if result is not None:
            st.image(result[..., ::-1], use_container_width=True)
            download_button_img(result, "Download Inpainted Image", "inpainted_result.png")
        else:
            st.info("Draw a mask and apply inpainting to see result.")

# COMPARE TAB
with tabs[2]:
    col1, col2 = st.columns(2)
    with col1:
        st.subheader("Original Image")
        orig = st.session_state.orig_image
        st.image(orig[..., ::-1], use_container_width=True)
        download_button_img(orig, "Download Original", "original.png")

    with col2:
        st.subheader("Processed Image")
        current = (
            st.session_state.inpaint_result
            if st.session_state.inpaint_result is not None
            else st.session_state.current_image
        )
        st.image(current if len(current.shape) == 2 else current[..., ::-1], use_container_width=True)
        download_button_img(current, "Download Current", "current.png")