File size: 6,316 Bytes
6c0d323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
"""Application to demo inpainting, Median and Bilateral Blur using streamlit.

Run using: streamlit run 10_04_image_restoration_app.py
"""

import streamlit as st
import pathlib
from streamlit_drawable_canvas import st_canvas
import cv2
import numpy as np
import io
import base64
from PIL import Image


# # Function to create a download link for output image
# def get_image_download_link(img, filename, text):
#     """Generates a link to download a particular image file."""
#     buffered = io.BytesIO()
#     img.save(buffered, format='JPEG')
#     img_str = base64.b64encode(buffered.getvalue()).decode()
#     href = f'<a href="data:file/txt;base64,{img_str}" download="{filename}">{text}</a>'
#     return href


# Set title.
st.sidebar.title('Image Restoration App with OpenCV')

# Description
st.sidebar.text('Upload an image and apply various restoration techniques.')


# Specify canvas parameters in application
uploaded_file = st.sidebar.file_uploader("Upload Image to restore:", type=["png", "jpg"])
image = None
res = None

if uploaded_file is not None:

    # Convert the file to an opencv image.
    file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
    image = cv2.imdecode(file_bytes, 1)
    # Display the uploaded image
    st.subheader("Original Image")
    st.image(image[:, :, ::-1])
    # Display a selection box for choosing the filter to apply.
    option = st.sidebar.selectbox('Median or Bilateral Blur or Inpaint?', ('None', 'Median Blur', 'Bilateral Blur', 'Image Inpaint'))

    if option == 'Median Blur':
        ksize = st.sidebar.slider("ksize: ", 3, 15, 5, 2)
        image = cv2.medianBlur(image, ksize)
        res=image[:,:,::-1]
        st.subheader("Median Blurred Image")
        st.image(res)
        # Display download button
        result = Image.fromarray(res)
        buffered = io.BytesIO()
        result.save(buffered, format="PNG")
        img_bytes = buffered.getvalue()
        st.download_button(label='Download Output', data=img_bytes, file_name='median_blur_output.png', mime='image/png')
        
    elif option == 'Bilateral Blur':
        dia = st.sidebar.slider("diameter: ", 1, 50, 20)
        sigmaColor = st.sidebar.slider("sigmaColor: ", 0, 250, 200, 10)
        sigmaSpace = st.sidebar.slider("sigmaSpace: ", 0, 250, 100, 10)
        image = cv2.bilateralFilter(image, dia, sigmaColor, sigmaSpace)
        res=image[:,:,::-1]
        st.subheader("Bilateral Blurred Image")
        st.image(res)
        # Display download button
        result = Image.fromarray(res)
        buffered = io.BytesIO()
        result.save(buffered, format="PNG")
        img_bytes = buffered.getvalue()
        st.download_button(label='Download Output', data=img_bytes, file_name='bilateral_blur_output.png', mime='image/png')

    elif option == 'Image Inpaint':

        stroke_width = st.sidebar.slider("Stroke width: ", 1, 25, 5)
        h, w = image.shape[:2]
        if w > 800:
            h_, w_ = int(h * 800 / w), 800
        else:
            h_, w_ = h, w

        # Create a canvas component.
        st.subheader("Draw over the areas you want to inpaint:")
        canvas_result = st_canvas(
            fill_color='white',
            stroke_width=stroke_width,
            stroke_color='black',
            background_image=Image.open(uploaded_file).resize((h_, w_)),
            update_streamlit=True,
            height=h_,
            width=w_,
            drawing_mode='freedraw',
            key="canvas",
        )
        stroke = canvas_result.image_data

        if stroke is not None:

            if st.sidebar.checkbox('show mask'):
                st.subheader("Mask")
                st.image(stroke)

            mask = cv2.split(stroke)[3]
            mask = np.uint8(mask)
            mask = cv2.resize(mask, (w, h))

        st.sidebar.caption('Happy with the selection?')
        option = st.sidebar.selectbox('Mode', ['None', 'Telea', 'NS', 'Compare both'])

        if option == 'Telea':
            st.subheader('Result of Telea')
            res = cv2.inpaint(src=image, inpaintMask=mask, inpaintRadius=3, flags=cv2.INPAINT_TELEA)[:,:,::-1]
            st.image(res)
            # Display download button
            result = Image.fromarray(res)
            buffered = io.BytesIO()
            result.save(buffered, format="PNG")
            img_bytes = buffered.getvalue()
            st.download_button(label='Download Output', data=img_bytes, file_name='inpaint_telea_output.png', mime='image/png')
        elif option == 'Compare both':
            col1, col2 = st.columns(2)
            res1 = cv2.inpaint(src=image, inpaintMask=mask, inpaintRadius=3, flags=cv2.INPAINT_TELEA)[:,:,::-1]
            res2 = cv2.inpaint(src=image, inpaintMask=mask, inpaintRadius=3, flags=cv2.INPAINT_NS)[:,:,::-1]
            with col1:
                st.subheader('Result of Telea')
                st.image(res1)
                # Display download button
                result1 = Image.fromarray(res1)
                buffered1 = io.BytesIO()
                result1.save(buffered1, format="PNG")
                img_bytes1 = buffered1.getvalue()
                st.download_button(label='Download Output', data=img_bytes1, file_name='inpaint_telea_output.png', mime='image/png')
            with col2:
                st.subheader('Result of NS')
                st.image(res2)
                # Display download button
                result2 = Image.fromarray(res2)
                buffered2 = io.BytesIO()
                result2.save(buffered2, format="PNG")
                img_bytes2 = buffered2.getvalue()
                st.download_button(label='Download Output', data=img_bytes2, file_name='inpaint_ns_output.png', mime='image/png')
        elif option == 'NS':
            st.subheader('Result of NS')
            res = cv2.inpaint(src=image, inpaintMask=mask, inpaintRadius=3, flags=cv2.INPAINT_NS)[:,:,::-1]
            st.image(res)
            # Display download button
            result = Image.fromarray(res)
            buffered = io.BytesIO()
            result.save(buffered, format="PNG")
            img_bytes = buffered.getvalue()
            st.download_button(label='Download Output', data=img_bytes, file_name='inpaint_ns_output.png', mime='image/png')
        else:
            pass