File size: 9,521 Bytes
069f8a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
import cv2
import numpy as np
import gradio as gr
# Define Utility Functions From Straight Lane Image.
def draw_lines(img, lines, color=[255, 0, 0], thickness=2):
"""Utility for drawing lines."""
if lines is not None:
for line in lines:
for x1, y1, x2, y2 in line:
cv2.line(img, (x1, y1), (x2, y2), color, thickness)
def hough_lines(img, rho, theta, threshold, min_line_len, max_line_gap):
"""Utility for defining Line Segments."""
lines = cv2.HoughLinesP(
img, rho, theta, threshold, np.array([]), minLineLength=min_line_len, maxLineGap=max_line_gap
)
line_img = np.zeros((img.shape[0], img.shape[1], 3), dtype=np.uint8)
draw_lines(line_img, lines)
return line_img, lines
def separate_left_right_lines(lines):
"""Separate left and right lines depending on the slope."""
left_lines = []
right_lines = []
if lines is not None:
for line in lines:
for x1, y1, x2, y2 in line:
if x1 == x2:
continue # Avoid division by zero
slope = (y2 - y1) / (x2 - x1)
if slope < 0: # Negative slope = left lane.
left_lines.append([x1, y1, x2, y2])
elif slope > 0: # Positive slope = right lane.
right_lines.append([x1, y1, x2, y2])
return left_lines, right_lines
def cal_avg(values):
"""Calculate average value."""
if values is not None:
if len(values) > 0:
n = len(values)
else:
n = 1
return sum(values) / n
def extrapolate_lines(lines, upper_border, lower_border):
"""Extrapolate lines keeping in mind the lower and upper border intersections."""
slopes = []
consts = []
if lines:
for x1, y1, x2, y2 in lines:
if x1 == x2:
continue # Avoid division by zero
slope = (y2 - y1) / (x2 - x1)
slopes.append(slope)
c = y1 - slope * x1
consts.append(c)
avg_slope = cal_avg(slopes)
avg_consts = cal_avg(consts)
if avg_slope == 0:
return None
# Calculate average intersection at lower_border.
x_lane_lower_point = int((lower_border - avg_consts) / avg_slope)
# Calculate average intersection at upper_border.
x_lane_upper_point = int((upper_border - avg_consts) / avg_slope)
return [x_lane_lower_point, lower_border, x_lane_upper_point, upper_border]
else:
return None
def draw_con(img, lines):
"""Fill in lane area."""
points = []
if lines is not None:
for x1, y1, x2, y2 in lines[0]:
points.append([x1, y1])
points.append([x2, y2])
for x1, y1, x2, y2 in lines[1]:
points.append([x2, y2])
points.append([x1, y1])
if points:
points = np.array([points], dtype="int32")
cv2.fillPoly(img, points, (0, 255, 0))
def extrapolated_lane_image(img, lines, roi_upper_border, roi_lower_border):
"""Main function called to get the final lane lines."""
lanes_img = np.zeros((img.shape[0], img.shape[1], 3), dtype=np.uint8)
# Extract each lane.
lines_left, lines_right = separate_left_right_lines(lines)
lane_left = extrapolate_lines(lines_left, roi_upper_border, roi_lower_border)
lane_right = extrapolate_lines(lines_right, roi_upper_border, roi_lower_border)
if lane_left is not None and lane_right is not None:
draw_con(lanes_img, [[lane_left], [lane_right]])
return lanes_img
def process_image(image, points):
# process the image
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
gray_select = cv2.inRange(gray, 150, 255)
# Create mask
roi_mask = np.zeros_like(gray_select)
points_array = np.array([points], dtype=np.int32)
# print('=========')
# print(points_array)
# Defining a 3 channel or 1 channel color to fill the mask.
if len(gray_select.shape) > 2:
channel_count = gray_select.shape[2] # 3 or 4 depending on your image.
ignore_mask_color = (255,) * channel_count
else:
ignore_mask_color = 255
cv2.fillPoly(roi_mask, points_array, ignore_mask_color)
# cv2.imwrite('mask.png', roi_mask)
roi_mask = cv2.bitwise_and(gray_select, roi_mask)
# cv2.imwrite('invmask.png', roi_mask)
# Canny Edge Detection.
low_threshold = 50
high_threshold = 100
img_canny = cv2.Canny(roi_mask, low_threshold, high_threshold)
# Remove noise using Gaussian blur.
kernel_size = 3
canny_blur = cv2.GaussianBlur(img_canny, (kernel_size, kernel_size), 0)
# Hough transform parameters set according to the input image.
rho = 1
theta = np.pi / 180
threshold = 100
min_line_len = 50
max_line_gap = 300
hough, lines = hough_lines(canny_blur, rho, theta, threshold, min_line_len, max_line_gap)
# Extrapolate lanes.
ys, xs = np.where(roi_mask > 0)
if len(ys) == 0:
# No ROI mask, return original image.
return image
roi_upper_border = np.min(ys)
roi_lower_border = np.max(ys)
lane_img = extrapolated_lane_image(image, lines, roi_upper_border, roi_lower_border)
# Combine using weighted image.
image_result = cv2.addWeighted(image, 1, lane_img, 0.4, 0.0)
# cv2.imshow('result', image_result)
return image_result
def extract_first_frame_interface(video_file):
# Read the video file.
cap = cv2.VideoCapture(video_file)
if not cap.isOpened():
print("Error opening video stream or file")
return None, None
# Read the first frame.
ret, frame = cap.read()
cap.release()
if not ret:
print("Cannot read the first frame")
return None, None
# Convert the frame to RGB (since OpenCV uses BGR).
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Return the frame for display and as the original frame.
return frame_rgb, frame_rgb # Return frame twice, once for display, once for state
def get_point_interface(original_frame, points, evt: gr.SelectData):
x, y = evt.index
# Ensure points is a list
if points is None:
points = []
points = points.copy() # Make a copy to avoid modifying in-place
points.append((x, y))
# Draw the point and lines on the image
image = original_frame.copy()
# Draw the points
for pt in points:
cv2.circle(image, pt, 5, (255, 0, 0), -1)
# Draw the lines
if len(points) > 1:
for i in range(len(points) - 1):
cv2.line(image, points[i], points[i + 1], (255, 0, 0), 2)
# Optionally, draw line from last to first to close the polygon
# cv2.line(image, points[-1], points[0], (255, 0, 0), 2)
# Return the updated image and points
# print("selected points")
# print(points)
return image, points
def process_video_interface(video_file, points):
# print("=-------------------------------")
# print(points)
points = list(points)
# Ensure points is a list of tuples
if points is None or len(points) < 3:
print("Not enough points to define a polygon")
return None
# Create the ROI mask
# Read the first frame to get the image size
cap = cv2.VideoCapture(video_file)
if not cap.isOpened():
print("Error opening video stream or file")
return None
frame_w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
frame_fps = int(cap.get(cv2.CAP_PROP_FPS))
fourcc = cv2.VideoWriter_fourcc(*"mp4v") # For mp4 output.
output_filename = "processed_output.mp4"
out = cv2.VideoWriter(output_filename, fourcc, frame_fps, (frame_w, frame_h))
while True:
ret, frame = cap.read()
if not ret:
break
# Process the frame using roi_mask
result = process_image(frame, points)
out.write(result)
cap.release()
out.release()
return output_filename
# Gradio Interface.
with gr.Blocks() as demo:
with gr.Row(equal_height=True):
video_input = gr.Video(label="Input Video")
extract_frame_button = gr.Button("Extract First Frame")
with gr.Row(equal_height=True):
first_frame_image = gr.Image(label="Click to select ROI points")
original_frame_state = gr.State(None)
points_state = gr.State([])
with gr.Row(equal_height=True):
process_button = gr.Button("Process Video")
clear_points_button = gr.Button("Clear Points")
output_video = gr.Video(label="Processed Video")
# Extract the first frame and store it
extract_frame_button.click(
fn=extract_first_frame_interface, inputs=video_input, outputs=[first_frame_image, original_frame_state]
)
# Handle point selection on the image
first_frame_image.select(
fn=get_point_interface, inputs=[original_frame_state, points_state], outputs=[first_frame_image, points_state]
)
# Clear the selected points
clear_points_button.click(
fn=lambda original_frame: (original_frame, []),
inputs=original_frame_state,
outputs=[first_frame_image, points_state],
)
# Process the video using the selected ROI
process_button.click(fn=process_video_interface, inputs=[video_input, points_state], outputs=output_video)
# Adding examples
gr.Examples(
examples=[
"./lane.mp4"
],
inputs=video_input
)
demo.launch()
|