File size: 9,521 Bytes
069f8a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import cv2
import numpy as np
import gradio as gr


# Define Utility Functions From Straight Lane Image.
def draw_lines(img, lines, color=[255, 0, 0], thickness=2):
    """Utility for drawing lines."""
    if lines is not None:
        for line in lines:
            for x1, y1, x2, y2 in line:
                cv2.line(img, (x1, y1), (x2, y2), color, thickness)


def hough_lines(img, rho, theta, threshold, min_line_len, max_line_gap):
    """Utility for defining Line Segments."""
    lines = cv2.HoughLinesP(
        img, rho, theta, threshold, np.array([]), minLineLength=min_line_len, maxLineGap=max_line_gap
    )
    line_img = np.zeros((img.shape[0], img.shape[1], 3), dtype=np.uint8)
    draw_lines(line_img, lines)
    return line_img, lines


def separate_left_right_lines(lines):
    """Separate left and right lines depending on the slope."""
    left_lines = []
    right_lines = []
    if lines is not None:
        for line in lines:
            for x1, y1, x2, y2 in line:
                if x1 == x2:
                    continue  # Avoid division by zero
                slope = (y2 - y1) / (x2 - x1)
                if slope < 0:  # Negative slope = left lane.
                    left_lines.append([x1, y1, x2, y2])
                elif slope > 0:  # Positive slope = right lane.
                    right_lines.append([x1, y1, x2, y2])
    return left_lines, right_lines


def cal_avg(values):
    """Calculate average value."""
    if values is not None:
        if len(values) > 0:
            n = len(values)
        else:
            n = 1
        return sum(values) / n


def extrapolate_lines(lines, upper_border, lower_border):
    """Extrapolate lines keeping in mind the lower and upper border intersections."""
    slopes = []
    consts = []
    if lines:
        for x1, y1, x2, y2 in lines:
            if x1 == x2:
                continue  # Avoid division by zero
            slope = (y2 - y1) / (x2 - x1)
            slopes.append(slope)
            c = y1 - slope * x1
            consts.append(c)
        avg_slope = cal_avg(slopes)
        avg_consts = cal_avg(consts)

        if avg_slope == 0:
            return None

        # Calculate average intersection at lower_border.
        x_lane_lower_point = int((lower_border - avg_consts) / avg_slope)

        # Calculate average intersection at upper_border.
        x_lane_upper_point = int((upper_border - avg_consts) / avg_slope)

        return [x_lane_lower_point, lower_border, x_lane_upper_point, upper_border]
    else:
        return None


def draw_con(img, lines):
    """Fill in lane area."""
    points = []
    if lines is not None:
        for x1, y1, x2, y2 in lines[0]:
            points.append([x1, y1])
            points.append([x2, y2])
        for x1, y1, x2, y2 in lines[1]:
            points.append([x2, y2])
            points.append([x1, y1])
    if points:
        points = np.array([points], dtype="int32")
        cv2.fillPoly(img, points, (0, 255, 0))


def extrapolated_lane_image(img, lines, roi_upper_border, roi_lower_border):
    """Main function called to get the final lane lines."""
    lanes_img = np.zeros((img.shape[0], img.shape[1], 3), dtype=np.uint8)
    # Extract each lane.
    lines_left, lines_right = separate_left_right_lines(lines)
    lane_left = extrapolate_lines(lines_left, roi_upper_border, roi_lower_border)
    lane_right = extrapolate_lines(lines_right, roi_upper_border, roi_lower_border)
    if lane_left is not None and lane_right is not None:
        draw_con(lanes_img, [[lane_left], [lane_right]])
    return lanes_img


def process_image(image, points):
    # process the image
    gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
    gray_select = cv2.inRange(gray, 150, 255)
    # Create mask
    roi_mask = np.zeros_like(gray_select)
    points_array = np.array([points], dtype=np.int32)
    # print('=========')
    # print(points_array)

    # Defining a 3 channel or 1 channel color to fill the mask.
    if len(gray_select.shape) > 2:
        channel_count = gray_select.shape[2]  # 3 or 4 depending on your image.
        ignore_mask_color = (255,) * channel_count
    else:
        ignore_mask_color = 255

    cv2.fillPoly(roi_mask, points_array, ignore_mask_color)
    # cv2.imwrite('mask.png', roi_mask)
    roi_mask = cv2.bitwise_and(gray_select, roi_mask)
    # cv2.imwrite('invmask.png', roi_mask)

    # Canny Edge Detection.
    low_threshold = 50
    high_threshold = 100
    img_canny = cv2.Canny(roi_mask, low_threshold, high_threshold)

    # Remove noise using Gaussian blur.
    kernel_size = 3
    canny_blur = cv2.GaussianBlur(img_canny, (kernel_size, kernel_size), 0)

    # Hough transform parameters set according to the input image.
    rho = 1
    theta = np.pi / 180
    threshold = 100
    min_line_len = 50
    max_line_gap = 300
    hough, lines = hough_lines(canny_blur, rho, theta, threshold, min_line_len, max_line_gap)

    # Extrapolate lanes.
    ys, xs = np.where(roi_mask > 0)
    if len(ys) == 0:
        # No ROI mask, return original image.
        return image
    roi_upper_border = np.min(ys)
    roi_lower_border = np.max(ys)
    lane_img = extrapolated_lane_image(image, lines, roi_upper_border, roi_lower_border)

    # Combine using weighted image.
    image_result = cv2.addWeighted(image, 1, lane_img, 0.4, 0.0)
    # cv2.imshow('result', image_result)
    return image_result


def extract_first_frame_interface(video_file):
    # Read the video file.
    cap = cv2.VideoCapture(video_file)
    if not cap.isOpened():
        print("Error opening video stream or file")
        return None, None
    # Read the first frame.
    ret, frame = cap.read()
    cap.release()
    if not ret:
        print("Cannot read the first frame")
        return None, None
    # Convert the frame to RGB (since OpenCV uses BGR).
    frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
    # Return the frame for display and as the original frame.
    return frame_rgb, frame_rgb  # Return frame twice, once for display, once for state


def get_point_interface(original_frame, points, evt: gr.SelectData):
    x, y = evt.index
    # Ensure points is a list
    if points is None:
        points = []
    points = points.copy()  # Make a copy to avoid modifying in-place
    points.append((x, y))
    # Draw the point and lines on the image
    image = original_frame.copy()
    # Draw the points
    for pt in points:
        cv2.circle(image, pt, 5, (255, 0, 0), -1)
    # Draw the lines
    if len(points) > 1:
        for i in range(len(points) - 1):
            cv2.line(image, points[i], points[i + 1], (255, 0, 0), 2)
    # Optionally, draw line from last to first to close the polygon
    # cv2.line(image, points[-1], points[0], (255, 0, 0), 2)
    # Return the updated image and points
    # print("selected points")
    # print(points)
    return image, points


def process_video_interface(video_file, points):
    # print("=-------------------------------")
    # print(points)
    points = list(points)
    # Ensure points is a list of tuples
    if points is None or len(points) < 3:
        print("Not enough points to define a polygon")
        return None
    # Create the ROI mask
    # Read the first frame to get the image size
    cap = cv2.VideoCapture(video_file)
    if not cap.isOpened():
        print("Error opening video stream or file")
        return None
    frame_w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    frame_h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    frame_fps = int(cap.get(cv2.CAP_PROP_FPS))
    fourcc = cv2.VideoWriter_fourcc(*"mp4v")  # For mp4 output.
    output_filename = "processed_output.mp4"
    out = cv2.VideoWriter(output_filename, fourcc, frame_fps, (frame_w, frame_h))
    while True:
        ret, frame = cap.read()
        if not ret:
            break
        # Process the frame using roi_mask
        result = process_image(frame, points)
        out.write(result)
    cap.release()
    out.release()
    return output_filename


# Gradio Interface.
with gr.Blocks() as demo:
    with gr.Row(equal_height=True):
        video_input = gr.Video(label="Input Video")
        extract_frame_button = gr.Button("Extract First Frame")
    with gr.Row(equal_height=True):
        first_frame_image = gr.Image(label="Click to select ROI points")
        original_frame_state = gr.State(None)
        points_state = gr.State([])
        with gr.Row(equal_height=True):
            process_button = gr.Button("Process Video")
            clear_points_button = gr.Button("Clear Points")
    output_video = gr.Video(label="Processed Video")

    # Extract the first frame and store it
    extract_frame_button.click(
        fn=extract_first_frame_interface, inputs=video_input, outputs=[first_frame_image, original_frame_state]
    )

    # Handle point selection on the image
    first_frame_image.select(
        fn=get_point_interface, inputs=[original_frame_state, points_state], outputs=[first_frame_image, points_state]
    )

    # Clear the selected points
    clear_points_button.click(
        fn=lambda original_frame: (original_frame, []),
        inputs=original_frame_state,
        outputs=[first_frame_image, points_state],
    )

    # Process the video using the selected ROI
    process_button.click(fn=process_video_interface, inputs=[video_input, points_state], outputs=output_video)
   
    # Adding examples
    gr.Examples(
        examples=[
            "./lane.mp4"
        ],
        inputs=video_input
    )    
    
    

demo.launch()