File size: 8,572 Bytes
5577bf7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import cv2
import numpy as np
import gradio as gr
import tempfile
# Define Utility Functions
def region_of_interest(img, vertices):
"""Select the region of interest (ROI) from a defined list of vertices."""
mask = np.zeros_like(img)
if len(img.shape) > 2:
channel_count = img.shape[2] # 3 or 4 depending on your image.
ignore_mask_color = (255,) * channel_count
else:
ignore_mask_color = 255
cv2.fillPoly(mask, [vertices], ignore_mask_color)
masked_image = cv2.bitwise_and(img, mask)
return masked_image
def draw_lines(img, lines, color=[255, 0, 0], thickness=2):
"""Utility for drawing lines."""
if lines is not None:
for line in lines:
for x1,y1,x2,y2 in line:
cv2.line(img, (x1, y1), (x2, y2), color, thickness)
def hough_lines(img, rho, theta, threshold, min_line_len, max_line_gap):
"""Utility for defining Line Segments."""
lines = cv2.HoughLinesP(
img, rho, theta, threshold, np.array([]),
minLineLength=min_line_len, maxLineGap=max_line_gap)
line_img = np.zeros((img.shape[0], img.shape[1], 3), dtype=np.uint8)
draw_lines(line_img, lines)
return line_img, lines
def separate_left_right_lines(lines):
"""Separate left and right lines depending on the slope."""
left_lines = []
right_lines = []
if lines is not None:
for line in lines:
for x1, y1, x2, y2 in line:
if x1 == x2:
continue # Skip vertical lines to avoid division by zero
slope = (y2 - y1) / (x2 - x1)
if slope < 0: # Negative slope = left lane
left_lines.append([x1, y1, x2, y2])
else: # Positive slope = right lane
right_lines.append([x1, y1, x2, y2])
return left_lines, right_lines
def cal_avg(values):
"""Calculate average value."""
if values is not None and len(values) > 0:
return sum(values) / len(values)
else:
return 0
def extrapolate_lines(lines, upper_border, lower_border):
"""Extrapolate lines keeping in mind the lower and upper border intersections."""
slopes = []
consts = []
if lines is not None and len(lines) != 0:
for x1, y1, x2, y2 in lines:
if x1 == x2:
continue # Avoid division by zero
slope = (y1 - y2) / (x1 - x2)
slopes.append(slope)
c = y1 - slope * x1
consts.append(c)
avg_slope = cal_avg(slopes)
avg_consts = cal_avg(consts)
if avg_slope == 0:
return None
x_lane_lower_point = int((lower_border - avg_consts) / avg_slope)
x_lane_upper_point = int((upper_border - avg_consts) / avg_slope)
return [x_lane_lower_point, lower_border, x_lane_upper_point, upper_border]
else:
return None
def extrapolated_lane_image(img, lines, roi_upper_border, roi_lower_border):
"""Main function called to get the final lane lines."""
lanes_img = np.zeros((img.shape[0], img.shape[1], 3), dtype=np.uint8)
lines_left, lines_right = separate_left_right_lines(lines)
lane_left = extrapolate_lines(lines_left, roi_upper_border, roi_lower_border)
lane_right = extrapolate_lines(lines_right, roi_upper_border, roi_lower_border)
if lane_left is not None and lane_right is not None:
draw_con(lanes_img, [[lane_left], [lane_right]])
return lanes_img
def draw_con(img, lines):
"""Fill in lane area."""
points = []
if lines is not None:
for x1, y1, x2, y2 in lines[0]:
points.append([x1, y1])
points.append([x2, y2])
for x1, y1, x2, y2 in lines[1]:
points.append([x2, y2])
points.append([x1, y1])
if points:
points = np.array([points], dtype='int32')
cv2.fillPoly(img, [points], (0, 255, 0))
def process_image(image, low_threshold, high_threshold, kernel_size, rho, theta, hough_threshold, min_line_len, max_line_gap, roi_vertices):
# Convert to grayscale.
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
# Intensity selection.
gray_select = cv2.inRange(gray, 150, 255)
# Region masking: Select vertices according to the input image.
roi_vertices_np = np.array(roi_vertices, dtype=np.int32)
gray_select_roi = region_of_interest(gray_select, roi_vertices_np)
# Canny Edge Detection.
img_canny = cv2.Canny(gray_select_roi, low_threshold, high_threshold)
# Remove noise using Gaussian blur.
if kernel_size % 2 == 0:
kernel_size += 1 # kernel_size must be odd
canny_blur = cv2.GaussianBlur(img_canny, (kernel_size, kernel_size), 0)
# Hough transform parameters set according to the input image.
hough, lines = hough_lines(canny_blur, rho, theta, hough_threshold, min_line_len, max_line_gap)
# Extrapolate lanes.
roi_upper_border = min([vertex[1] for vertex in roi_vertices]) # smallest y value
roi_lower_border = max([vertex[1] for vertex in roi_vertices]) # largest y value
lane_img = extrapolated_lane_image(image, lines, roi_upper_border, roi_lower_border)
# Combined using weighted image.
image_result = cv2.addWeighted(image, 1, lane_img, 0.4, 0.0)
return image_result
def process_video(input_video_path, low_threshold, high_threshold, kernel_size, rho, theta, hough_threshold, min_line_len, max_line_gap, roi_vertices):
# Initialize video capture
video_cap = cv2.VideoCapture(input_video_path)
if not video_cap.isOpened():
raise Exception("Error opening video stream or file")
# Retrieve video frame properties.
frame_w = int(video_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_h = int(video_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
frame_fps = video_cap.get(cv2.CAP_PROP_FPS)
# Output video file
temp_video = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False)
output_video_path = temp_video.name
# Video writer
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
vid_out = cv2.VideoWriter(output_video_path, fourcc, frame_fps, (frame_w,frame_h))
# Process each frame
while True:
ret, frame = video_cap.read()
if not ret:
break
result = process_image(frame, low_threshold, high_threshold, kernel_size, rho, theta, hough_threshold, min_line_len, max_line_gap, roi_vertices)
vid_out.write(result)
# Release resources
video_cap.release()
vid_out.release()
return output_video_path
def gradio_process_video(input_video_path, low_threshold, high_threshold, kernel_size, rho, theta_degree, hough_threshold, min_line_len, max_line_gap,
x1, y1, x2, y2, x3, y3, x4, y4):
# Define ROI vertices from user input
roi_vertices = [[x1, y1], [x2, y2], [x3, y3], [x4, y4]]
# Convert theta_degree to radians
theta = np.deg2rad(theta_degree)
# Process the video
output_video_path = process_video(input_video_path, low_threshold, high_threshold, kernel_size, rho, theta, hough_threshold, min_line_len, max_line_gap, roi_vertices)
return output_video_path
# Create the Gradio interface
iface = gr.Interface(
fn=gradio_process_video,
inputs=[
gr.Video(label="Input Video"),
gr.Slider(0, 255, step=1, value=50, label="Canny Low Threshold"),
gr.Slider(0, 255, step=1, value=150, label="Canny High Threshold"),
gr.Slider(1, 31, step=2, value=5, label="Gaussian Kernel Size"),
gr.Slider(1, 10, step=1, value=1, label="Hough Transform Rho"),
gr.Slider(0, 180, step=1, value=1, label="Hough Transform Theta (degrees)"),
gr.Slider(1, 500, step=1, value=100, label="Hough Transform Threshold"),
gr.Slider(1, 500, step=1, value=50, label="Hough Transform Min Line Length"),
gr.Slider(1, 500, step=1, value=300, label="Hough Transform Max Line Gap"),
gr.Number(value=100, label="ROI x1"),
gr.Number(value=540, label="ROI y1"),
gr.Number(value=900, label="ROI x2"),
gr.Number(value=540, label="ROI y2"),
gr.Number(value=525, label="ROI x3"),
gr.Number(value=330, label="ROI y3"),
gr.Number(value=440, label="ROI x4"),
gr.Number(value=330, label="ROI y4"),
],
outputs=gr.Video(label="Processed Video"),
title="Lane Detection Video Processing",
description="Upload a video and adjust parameters to process the video for lane detection.",
)
# Launch the interface
iface.launch() |