import streamlit as st import cv2 import numpy as np from PIL import Image from io import BytesIO import base64 #--------------------------------------------------------------------------------------- # The session_state function allows us to initialize and save variables across for across # session states. This is a valuable feature that enables us to take different actions # depending on the state of selected variables in the code. If this is not done then # all variables are reset any time the application state changes (e.g., when a user # interacts with a widget). For example, the confidence threshold of the slider has # changed, but we are still working with the same image, we can detect that by # comparing the current file_uploaded_id (img_file_buffer.id) with the # previous value (ss.file_uploaded_id) and if they are the same then we know we # don't need to call the face detection model again. We just simply need to process # the previous set of detections. #--------------------------------------------------------------------------------------- # Create application title and file uploader widget. st.title("OpenCV Deep Learning based Face Detection") img_file_buffer = st.file_uploader("Choose a file", type=['jpg', 'jpeg', 'png']) # Initialize session state variables if 'file_uploaded_name' not in st.session_state: st.session_state.file_uploaded_name = None if 'detections' not in st.session_state: st.session_state.detections = None # Function for detecting faces in an image. def detectFaceOpenCVDnn(net, frame): # Create a blob from the image and apply some pre-processing. blob = cv2.dnn.blobFromImage(frame, 1.0, (300, 300), [104, 117, 123], False, False) # Set the blob as input to the model. net.setInput(blob) # Get Detections. detections = net.forward() return detections # Function for annotating the image with bounding boxes for each detected face. def process_detections(frame, detections, conf_threshold=0.5): bboxes = [] frame_h = frame.shape[0] frame_w = frame.shape[1] # Loop over all detections and draw bounding boxes around each face. for i in range(detections.shape[2]): confidence = detections[0, 0, i, 2] if confidence > conf_threshold: x1 = int(detections[0, 0, i, 3] * frame_w) y1 = int(detections[0, 0, i, 4] * frame_h) x2 = int(detections[0, 0, i, 5] * frame_w) y2 = int(detections[0, 0, i, 6] * frame_h) bboxes.append([x1, y1, x2, y2]) bb_line_thickness = max(1, int(round(frame_h / 200))) # Draw bounding boxes around detected faces. cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), bb_line_thickness, cv2.LINE_8) return frame, bboxes # Function to load the DNN model. @st.cache_resource() def load_model(): modelFile = "res10_300x300_ssd_iter_140000_fp16.caffemodel" configFile = "deploy.prototxt" net = cv2.dnn.readNetFromCaffe(configFile, modelFile) return net # Function to generate a download link for output file. def get_image_download_link(img, filename, text): buffered = BytesIO() img.save(buffered, format="JPEG") img_str = base64.b64encode(buffered.getvalue()).decode() href = f'{text}' return href net = load_model() if img_file_buffer is not None: # Read the file and convert it to OpenCV Image. raw_bytes = np.asarray(bytearray(img_file_buffer.read()), dtype=np.uint8) # Loads image in a BGR channel order. image = cv2.imdecode(raw_bytes, cv2.IMREAD_COLOR) file_name = img_file_buffer.name # Create placeholders to display input and output images. placeholders = st.columns(2) # Display Input image in the first placeholder. placeholders[0].image(image, channels='BGR') placeholders[0].text("Input Image") # Create a Slider and get the threshold from the slider. conf_threshold = st.slider("SET Confidence Threshold", min_value=0.0, max_value=1.0, step=.01, value=0.5) # Check if the loaded image is "new", if so call the face detection model function. if file_name != st.session_state.file_uploaded_name: # Set the file_uploaded_name equal to the name of the file that was just uploaded. st.session_state.file_uploaded_name = file_name # Save the detections in the session-state for future use with the current loaded image. st.session_state.detections = detectFaceOpenCVDnn(net, image) st.write("New image uploaded, calling the face detection model.") else: st.write("Same image used, processing with the previous detections.") # Process the detections based on the current confidence threshold. out_image, _ = process_detections(image, st.session_state.detections, conf_threshold=conf_threshold) # Display Detected faces. placeholders[1].image(out_image, channels='BGR') placeholders[1].text("Output Image") # Convert OpenCV image to PIL. out_image = Image.fromarray(out_image[:, :, ::-1]) # Create a link for downloading the output file. st.markdown(get_image_download_link(out_image, "face_output.jpg", 'Download Output Image'), unsafe_allow_html=True)