updated app.py
Browse files- README.md +1 -1
- app.py +45 -76
- requirements.txt +1 -1
README.md
CHANGED
@@ -4,7 +4,7 @@ emoji: 👁
|
|
4 |
colorFrom: yellow
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
|
|
4 |
colorFrom: yellow
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 5.23.3
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
app.py
CHANGED
@@ -2,102 +2,70 @@ import cv2
|
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
4 |
|
5 |
-
# input_video = './sample/car.mp4'
|
6 |
|
7 |
-
# video Inference
|
8 |
def vid_inf(vid_path, contour_thresh):
|
9 |
-
|
|
|
10 |
cap = cv2.VideoCapture(vid_path)
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
# get the video frames' width and height for proper saving of videos
|
13 |
frame_width = int(cap.get(3))
|
14 |
frame_height = int(cap.get(4))
|
15 |
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
16 |
frame_size = (frame_width, frame_height)
|
17 |
-
fourcc = cv2.VideoWriter_fourcc(*
|
18 |
output_video = "output_recorded.mp4"
|
19 |
-
|
20 |
-
# create the `VideoWriter()` object
|
21 |
out = cv2.VideoWriter(output_video, fourcc, fps, frame_size)
|
22 |
|
23 |
-
# Create Background Subtractor MOG2 object
|
24 |
backSub = cv2.createBackgroundSubtractorMOG2(history=200, varThreshold=25, detectShadows=True)
|
25 |
-
# print(dir(backSub))
|
26 |
|
27 |
-
# Check if camera opened successfully
|
28 |
-
if not cap.isOpened():
|
29 |
-
print("Error opening video file")
|
30 |
count = 0
|
31 |
-
# Read until video is completed
|
32 |
while cap.isOpened():
|
33 |
-
# Capture frame-by-frame
|
34 |
ret, frame = cap.read()
|
35 |
-
|
36 |
-
if ret:
|
37 |
-
# Apply background subtraction
|
38 |
-
fg_mask = backSub.apply(frame)
|
39 |
-
# print(fg_mask.shape)
|
40 |
-
# fg_mask = cv2.resize(fg_mask, (640,480))
|
41 |
-
# print(fg_mask.shape)
|
42 |
-
# cv2.imshow('Frame_bg', fg_mask)
|
43 |
-
|
44 |
-
# apply global threshol to remove shadows
|
45 |
-
retval, mask_thresh = cv2.threshold(
|
46 |
-
fg_mask, 200, 255, cv2.THRESH_BINARY)
|
47 |
-
# cv2.imshow('frame_thresh', mask_thresh)
|
48 |
-
|
49 |
-
# set the kernal
|
50 |
-
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
|
51 |
-
# Apply erosion
|
52 |
-
mask_eroded = cv2.morphologyEx(mask_thresh, cv2.MORPH_OPEN, kernel)
|
53 |
-
# mask_eroded = cv2.resize(mask_eroded, (640,480))
|
54 |
-
# cv2.imshow('frame_erode', mask_eroded)
|
55 |
-
|
56 |
-
# Find contours
|
57 |
-
contours, hierarchy = cv2.findContours(
|
58 |
-
mask_eroded, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
59 |
-
# print(contours)
|
60 |
-
|
61 |
-
min_contour_area = contour_thresh # Define your minimum area threshold
|
62 |
-
large_contours = [
|
63 |
-
cnt for cnt in contours if cv2.contourArea(cnt) > min_contour_area]
|
64 |
-
# frame_ct = cv2.drawContours(frame, large_contours, -1, (0, 255, 0), 2)
|
65 |
-
frame_out = frame.copy()
|
66 |
-
for cnt in large_contours:
|
67 |
-
# print(cnt.shape)
|
68 |
-
x, y, w, h = cv2.boundingRect(cnt)
|
69 |
-
frame_out = cv2.rectangle(frame_out, (x, y), (x+w, y+h), (0, 0, 200), 3)
|
70 |
-
frame_out_final = cv2.cvtColor(frame_out, cv2.COLOR_BGR2RGB)
|
71 |
-
vid = out.write(frame_out)
|
72 |
-
|
73 |
-
# Display the resulting frame
|
74 |
-
# resized_frame = cv2.resize(frame_out, (640,480))
|
75 |
-
# cv2.imshow('Frame_final', frame_out)
|
76 |
-
|
77 |
-
# update the count every frame and display every 12th frame
|
78 |
-
if not count % 12:
|
79 |
-
yield frame_out_final, None
|
80 |
-
count += 1
|
81 |
-
|
82 |
-
# Press Q on keyboard to exit
|
83 |
-
if cv2.waitKey(25) & 0xFF == ord('q'):
|
84 |
-
break
|
85 |
-
else:
|
86 |
break
|
87 |
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
cap.release()
|
90 |
out.release()
|
91 |
-
# Closes all the frames
|
92 |
cv2.destroyAllWindows()
|
93 |
yield None, output_video
|
94 |
|
95 |
-
# vid_inf(input_video)
|
96 |
-
|
97 |
|
98 |
-
#
|
99 |
input_video = gr.Video(label="Input Video")
|
100 |
-
contour_thresh = gr.Slider(
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
output_frames = gr.Image(label="Output Frames")
|
102 |
output_video_file = gr.Video(label="Output video")
|
103 |
|
@@ -105,10 +73,11 @@ app = gr.Interface(
|
|
105 |
fn=vid_inf,
|
106 |
inputs=[input_video, contour_thresh],
|
107 |
outputs=[output_frames, output_video_file],
|
108 |
-
title=
|
109 |
-
description=
|
110 |
-
|
111 |
-
examples=[["./sample/car.mp4",
|
112 |
cache_examples=False,
|
113 |
)
|
114 |
-
|
|
|
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
4 |
|
|
|
5 |
|
|
|
6 |
def vid_inf(vid_path, contour_thresh):
|
7 |
+
contour_thresh = int(contour_thresh)
|
8 |
+
|
9 |
cap = cv2.VideoCapture(vid_path)
|
10 |
+
if not cap.isOpened():
|
11 |
+
print("Error opening video file")
|
12 |
+
yield None, None
|
13 |
+
return
|
14 |
|
|
|
15 |
frame_width = int(cap.get(3))
|
16 |
frame_height = int(cap.get(4))
|
17 |
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
18 |
frame_size = (frame_width, frame_height)
|
19 |
+
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
20 |
output_video = "output_recorded.mp4"
|
|
|
|
|
21 |
out = cv2.VideoWriter(output_video, fourcc, fps, frame_size)
|
22 |
|
|
|
23 |
backSub = cv2.createBackgroundSubtractorMOG2(history=200, varThreshold=25, detectShadows=True)
|
|
|
24 |
|
|
|
|
|
|
|
25 |
count = 0
|
|
|
26 |
while cap.isOpened():
|
|
|
27 |
ret, frame = cap.read()
|
28 |
+
if not ret:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
break
|
30 |
|
31 |
+
fg_mask = backSub.apply(frame)
|
32 |
+
|
33 |
+
_, mask_thresh = cv2.threshold(fg_mask, 200, 255, cv2.THRESH_BINARY)
|
34 |
+
|
35 |
+
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
|
36 |
+
mask_cleaned = cv2.morphologyEx(mask_thresh, cv2.MORPH_OPEN, kernel)
|
37 |
+
|
38 |
+
contours, _ = cv2.findContours(mask_cleaned, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
39 |
+
|
40 |
+
large_contours = [cnt for cnt in contours if cv2.contourArea(cnt) > contour_thresh]
|
41 |
+
|
42 |
+
frame_out = frame.copy()
|
43 |
+
for cnt in large_contours:
|
44 |
+
x, y, w, h = cv2.boundingRect(cnt)
|
45 |
+
cv2.rectangle(frame_out, (x, y), (x + w, y + h), (0, 0, 200), 3)
|
46 |
+
|
47 |
+
frame_rgb = cv2.cvtColor(frame_out, cv2.COLOR_BGR2RGB)
|
48 |
+
out.write(frame_out)
|
49 |
+
|
50 |
+
if count % 12 == 0:
|
51 |
+
yield frame_rgb, None
|
52 |
+
count += 1
|
53 |
+
|
54 |
cap.release()
|
55 |
out.release()
|
|
|
56 |
cv2.destroyAllWindows()
|
57 |
yield None, output_video
|
58 |
|
|
|
|
|
59 |
|
60 |
+
# Gradio interface
|
61 |
input_video = gr.Video(label="Input Video")
|
62 |
+
contour_thresh = gr.Slider(
|
63 |
+
0,
|
64 |
+
10000,
|
65 |
+
value=1000,
|
66 |
+
label="Contour Threshold",
|
67 |
+
info="Set the minimum size of moving objects to detect (in pixels).",
|
68 |
+
)
|
69 |
output_frames = gr.Image(label="Output Frames")
|
70 |
output_video_file = gr.Video(label="Output video")
|
71 |
|
|
|
73 |
fn=vid_inf,
|
74 |
inputs=[input_video, contour_thresh],
|
75 |
outputs=[output_frames, output_video_file],
|
76 |
+
title="Motion Detection using OpenCV",
|
77 |
+
description="A Gradio app that uses background subtraction and contour detection to highlight moving objects in a video.",
|
78 |
+
flagging_mode="never",
|
79 |
+
examples=[["./sample/car.mp4", 1000], ["./sample/motion_test.mp4", 5000], ["./sample/home.mp4", 4500]],
|
80 |
cache_examples=False,
|
81 |
)
|
82 |
+
|
83 |
+
app.queue().launch()
|
requirements.txt
CHANGED
@@ -1,2 +1,2 @@
|
|
1 |
opencv-python==4.10.0.84
|
2 |
-
gradio==
|
|
|
1 |
opencv-python==4.10.0.84
|
2 |
+
gradio==5.23.3
|