import cv2 import gradio as gr import numpy as np def vid_inf(vid_path, contour_thresh): contour_thresh = int(contour_thresh) cap = cv2.VideoCapture(vid_path) if not cap.isOpened(): print("Error opening video file") yield None, None return frame_width = int(cap.get(3)) frame_height = int(cap.get(4)) fps = int(cap.get(cv2.CAP_PROP_FPS)) frame_size = (frame_width, frame_height) fourcc = cv2.VideoWriter_fourcc(*"mp4v") output_video = "output_recorded.mp4" out = cv2.VideoWriter(output_video, fourcc, fps, frame_size) backSub = cv2.createBackgroundSubtractorMOG2(history=200, varThreshold=25, detectShadows=True) count = 0 while cap.isOpened(): ret, frame = cap.read() if not ret: break fg_mask = backSub.apply(frame) _, mask_thresh = cv2.threshold(fg_mask, 200, 255, cv2.THRESH_BINARY) kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)) mask_cleaned = cv2.morphologyEx(mask_thresh, cv2.MORPH_OPEN, kernel) contours, _ = cv2.findContours(mask_cleaned, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) large_contours = [cnt for cnt in contours if cv2.contourArea(cnt) > contour_thresh] frame_out = frame.copy() for cnt in large_contours: x, y, w, h = cv2.boundingRect(cnt) cv2.rectangle(frame_out, (x, y), (x + w, y + h), (0, 0, 200), 3) frame_rgb = cv2.cvtColor(frame_out, cv2.COLOR_BGR2RGB) out.write(frame_out) if count % 12 == 0: yield frame_rgb, None count += 1 cap.release() out.release() cv2.destroyAllWindows() yield None, output_video # Gradio interface input_video = gr.Video(label="Input Video") contour_thresh = gr.Slider( 0, 10000, value=1000, label="Contour Threshold", info="Set the minimum size of moving objects to detect (in pixels).", ) output_frames = gr.Image(label="Output Frames") output_video_file = gr.Video(label="Output video") app = gr.Interface( fn=vid_inf, inputs=[input_video, contour_thresh], outputs=[output_frames, output_video_file], title="Motion Detection using OpenCV", description="A Gradio app that uses background subtraction and contour detection to highlight moving objects in a video.", flagging_mode="never", examples=[["./sample/car.mp4", 1000], ["./sample/motion_test.mp4", 5000], ["./sample/home.mp4", 4500]], cache_examples=False, ) app.queue().launch()