Zenithwang's picture
Update app.py
5c0a46c verified
raw
history blame
3.75 kB
import spaces
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
from threading import Thread
import traceback
model_path = 'infly/OpenCoder-1.5B-Instruct'
# Loading the tokenizer and model from Hugging Face's model hub.
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, torch_dtype=torch.bfloat16)
# using CUDA for an optimal experience
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
# Defining a custom stopping criteria class for the model's text generation.
class StopOnTokens(StoppingCriteria):
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
stop_ids = [96539] # IDs of tokens where the generation should stop.
for stop_id in stop_ids:
if input_ids[0][-1] == stop_id: # Checking if the last generated token is a stop token.
return True
return False
system_role= 'system'
user_role = 'user'
assistant_role = "assistant"
sft_start_token = "<|im_start|>"
sft_end_token = "<|im_end|>"
ct_end_token = "<|endoftext|>"
# system_prompt= 'You are a CodeLLM developed by INF.'
# Function to generate model predictions.
@spaces.GPU()
def predict(message, history):
try:
stop = StopOnTokens()
model_messages = []
# print(f'history: {history}')
for i, item in enumerate(history):
model_messages.append({"role": user_role, "content": item[0]})
model_messages.append({"role": assistant_role, "content": item[1]})
model_messages.append({"role": user_role, "content": message})
print(f'model_messages: {model_messages}')
# print(f'model_final_inputs: {tokenizer.apply_chat_template(model_messages, add_generation_prompt=True, tokenize=False)}', flush=True)
model_inputs = tokenizer.apply_chat_template(model_messages, add_generation_prompt=True, return_tensors="pt").to(device)
# model_inputs = tokenizer([messages], return_tensors="pt").to(device)
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=model_inputs,
streamer=streamer,
max_new_tokens=1024,
do_sample=False,
stopping_criteria=StoppingCriteriaList([stop])
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start() # Starting the generation in a separate thread.
partial_message = ""
for new_token in streamer:
partial_message += new_token
if sft_end_token in partial_message: # Breaking the loop if the stop token is generated.
break
yield partial_message
except Exception as e:
print(traceback.format_exc())
css = """
full-height {
height: 100%;
}
"""
prompt_examples = [
'Write a quick sort algorithm in python.',
'Write a greedy snake game using pygame.',
'How to use numpy?'
]
placeholder = """
<div style="opacity: 0.5;">
<img src="https://raw.githubusercontent.com/OpenCoder-llm/opencoder-llm.github.io/refs/heads/main/static/images/opencoder_icon.jpg" style="width:20%;">
</div>
"""
chatbot = gr.Chatbot(label='OpenCoder', placeholder=placeholder)
with gr.Blocks(theme=gr.themes.Soft(), fill_height=True) as demo:
gr.ChatInterface(predict, chatbot=chatbot, fill_height=True, examples=prompt_examples, css=css)
demo.launch() # Launching the web interface.