Zenithwang commited on
Commit
c888747
1 Parent(s): 1b5df96

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +95 -51
app.py CHANGED
@@ -1,64 +1,108 @@
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
27
 
28
- response = ""
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
 
 
 
42
 
 
 
 
 
 
43
  """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
 
 
 
 
 
 
 
 
 
 
45
  """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
-
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
+ import spaces
2
  import gradio as gr
3
+ import torch
4
+ from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
5
+ from threading import Thread
6
+ import traceback
7
 
8
+ model_path = 'infly/OpenCoder-8B-Instruct'
9
+
10
+ # Loading the tokenizer and model from Hugging Face's model hub.
11
+ tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
12
+ model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, torch_dtype=torch.bfloat16)
13
+
14
+ # using CUDA for an optimal experience
15
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
16
+ model = model.to(device)
17
+
18
+ # Defining a custom stopping criteria class for the model's text generation.
19
+ class StopOnTokens(StoppingCriteria):
20
+ def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
21
+ stop_ids = [96539] # IDs of tokens where the generation should stop.
22
+ for stop_id in stop_ids:
23
+ if input_ids[0][-1] == stop_id: # Checking if the last generated token is a stop token.
24
+ return True
25
+ return False
26
+
27
+
28
+ system_role= 'system'
29
+ user_role = 'user'
30
+ assistant_role = "assistant"
31
 
32
+ sft_start_token = "<|im_start|>"
33
+ sft_end_token = "<|im_end|>"
34
+ ct_end_token = "<|endoftext|>"
35
 
36
+ # system_prompt= 'You are a CodeLLM developed by INF.'
 
 
 
 
 
 
 
 
37
 
 
 
 
 
 
38
 
39
+ # Function to generate model predictions.
40
 
41
+ @spaces.GPU()
42
+ def predict(message, history):
43
 
44
+ try:
45
+ stop = StopOnTokens()
46
+
47
+ model_messages = []
48
+ # print(f'history: {history}')
 
 
 
49
 
50
+ for i, item in enumerate(history):
51
+ model_messages.append({"role": user_role, "content": item[0]})
52
+ model_messages.append({"role": assistant_role, "content": item[1]})
53
+
54
+ model_messages.append({"role": user_role, "content": message})
55
+
56
+ print(f'model_messages: {model_messages}')
57
+
58
+ # print(f'model_final_inputs: {tokenizer.apply_chat_template(model_messages, add_generation_prompt=True, tokenize=False)}', flush=True)
59
+ model_inputs = tokenizer.apply_chat_template(model_messages, add_generation_prompt=True, return_tensors="pt").to(device)
60
+ # model_inputs = tokenizer([messages], return_tensors="pt").to(device)
61
+
62
+ streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
63
+ generate_kwargs = dict(
64
+ input_ids=model_inputs,
65
+ streamer=streamer,
66
+ max_new_tokens=1024,
67
+ do_sample=False,
68
+ stopping_criteria=StoppingCriteriaList([stop])
69
+ )
70
+
71
+ t = Thread(target=model.generate, kwargs=generate_kwargs)
72
+ t.start() # Starting the generation in a separate thread.
73
+ partial_message = ""
74
+ for new_token in streamer:
75
+ partial_message += new_token
76
+ if sft_end_token in partial_message: # Breaking the loop if the stop token is generated.
77
+ break
78
+ yield partial_message
79
 
80
+ except Exception as e:
81
+ print(traceback.format_exc())
82
 
83
+
84
+ css = """
85
+ full-height {
86
+ height: 100%;
87
+ }
88
  """
89
+
90
+ prompt_examples = [
91
+ 'Write a quick sort algorithm in python.',
92
+ 'Write a greedy snake game using pygame.',
93
+ 'How to use numpy?'
94
+ ]
95
+
96
+ placeholder = """
97
+ <div style="opacity: 0.5;">
98
+ <img src="https://raw.githubusercontent.com/OpenCoder-llm/opencoder-llm.github.io/refs/heads/main/static/images/opencoder_icon.jpg" style="width:20%;">
99
+ </div>
100
  """
101
+
102
+
103
+ chatbot = gr.Chatbot(label='OpenCoder', placeholder=placeholder)
104
+ with gr.Blocks(theme=gr.themes.Soft(), fill_height=True) as demo:
105
+
106
+ gr.ChatInterface(predict, chatbot=chatbot, fill_height=True, examples=prompt_examples, css=css)
107
+
108
+ demo.launch() # Launching the web interface.