Spaces:
Runtime error
Runtime error
File size: 3,588 Bytes
2c2e788 0497fcb 2c2e788 0497fcb 2c2e788 08cbdf8 2c2e788 08cbdf8 0497fcb 2c2e788 0497fcb 2c2e788 b01ef75 2c2e788 0497fcb 2c2e788 b01ef75 2c2e788 0497fcb 2c2e788 0497fcb 2c2e788 0497fcb 08cbdf8 367f69a 08cbdf8 0497fcb 08cbdf8 0497fcb 08cbdf8 2c2e788 0497fcb 2c2e788 0497fcb 2c2e788 0497fcb 2c2e788 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
import os
import uuid
import gradio as gr
from llmriddles.questions import QuestionExecutor
from llmriddles.questions import list_ordered_questions
_QUESTION_IDS = {}
_QUESTIONS = list_ordered_questions()
_LANG = os.environ.get('QUESTION_LANG', 'cn')
_LLM = os.environ.get('QUESTION_LLM', 'chatgpt')
def _need_api_key():
return _LLM == 'chatgpt'
def _get_api_key_cfgs(api_key):
if _LLM == 'chatgpt':
return {'api_key': api_key}
else:
return {}
if __name__ == '__main__':
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
gr_requirement = gr.TextArea(placeholder='Click \'Next\' to Start', label='Requirements')
gr_question = gr.TextArea(placeholder='Your Question for LLM', label='Question')
gr_answer = gr.TextArea(placeholder='Answer From LLM', label='Answer')
gr_submit = gr.Button('Submit', interactive=False)
with gr.Column():
gr_api_key = gr.Text(placeholder='Your API Key', label='API Key', type='password',
visible=_need_api_key())
gr_uuid = gr.Text(value='')
gr_predict = gr.Label(label='Correctness')
gr_explanation = gr.TextArea(label='Explanation')
gr_next = gr.Button('Next')
def _next_question(uuid_):
if not uuid_:
uuid_ = str(uuid.uuid4())
global _QUESTION_IDS
_qid = _QUESTION_IDS.get(uuid_, -1)
_qid += 1
_QUESTION_IDS[uuid_] = _qid
print(_QUESTION_IDS)
if _qid >= len(_QUESTIONS):
return 'Congratulations!', '', '', {}, '', \
gr.Button('Submit', interactive=False), \
gr.Button('Next', interactive=False), \
uuid_
else:
executor = QuestionExecutor(_QUESTIONS[_qid], _LANG)
return executor.question_text, '', '', {}, '', \
gr.Button('Submit', interactive=True), \
gr.Button('Next', interactive=False), \
uuid_
gr_next.click(
fn=_next_question,
inputs=[gr_uuid],
outputs=[
gr_requirement, gr_question, gr_answer,
gr_predict, gr_explanation, gr_submit, gr_next, gr_uuid,
],
)
def _submit_answer(qs_text: str, api_key: str, uuid_: str):
if _need_api_key() and not api_key:
return '---', {}, 'Please Enter API Key Before Submitting Question.', \
gr.Button('Next', interactive=False), uuid_
print(_QUESTION_IDS)
_qid = _QUESTION_IDS[uuid_]
executor = QuestionExecutor(
_QUESTIONS[_qid], _LANG,
llm=_LLM, llm_cfgs=_get_api_key_cfgs(api_key) if _need_api_key() else {}
)
answer_text, correctness, explanation = executor.check(qs_text)
labels = {'Correct': 1.0} if correctness else {'Wrong': 1.0}
if correctness:
return answer_text, labels, explanation, gr.Button('Next', interactive=True), uuid_
else:
return answer_text, labels, explanation, gr.Button('Next', interactive=False), uuid_
gr_submit.click(
_submit_answer,
inputs=[gr_question, gr_api_key, gr_uuid],
outputs=[gr_answer, gr_predict, gr_explanation, gr_next, gr_uuid],
)
demo.launch()
|