sugarfreez commited on
Commit
3c336c3
1 Parent(s): 4d5391a

style(nyz): add DRL algo list and link

Browse files
Files changed (1) hide show
  1. README.md +18 -5
README.md CHANGED
@@ -5,6 +5,7 @@ colorFrom: red
5
  colorTo: gray
6
  sdk: static
7
  pinned: false
 
8
  ---
9
 
10
 
@@ -22,27 +23,39 @@ OpenDILab contributes to the integration of the latest and most comprehensive ac
22
  If you want to contact us & join us, you can ✉️ to our team : <[email protected]>.
23
 
24
 
 
25
  # Overview of Model Zoo
26
 
27
- ## Deep Reinforcement Learning
 
 
 
28
 
29
  | Algo.\Env. | LunarLander | BipedalWalker | Pendulum | Atari (Pong) | Atari (SpaceInvaders) | Atari (Qbert) | MuJoCo (Hopper) | MuJoCo (Halfcheetah) | MuJoCo (Walker2d) |
30
  | ------------- | ------------- | ------------------------ | ------------ | -------------- | ------------ | ------------------ | --------- | --------- | --------- |
31
- | [PPO](https://arxiv.org/abs/1707.06347) | [Model](https://huggingface.co/OpenDILabCommunity/LunarLander-v2-ppo) | | | | | | | | |
 
 
 
 
 
 
 
 
32
 
33
- ## Multi-Agent Reinforcement Learning
34
  <details close>
35
  <summary>(Click for Details)</summary>
36
  TBD
37
  </details>
38
 
39
- ## Offline Reinforcement Learning
40
  <details close>
41
  <summary>(Click for Details)</summary>
42
  TBD
43
  </details>
44
 
45
- ## Model-Based Reinforcement Learning
46
  <details close>
47
  <summary>(Click for Details)</summary>
48
  TBD
 
5
  colorTo: gray
6
  sdk: static
7
  pinned: false
8
+ license: apache-2.0
9
  ---
10
 
11
 
 
23
  If you want to contact us & join us, you can ✉️ to our team : <[email protected]>.
24
 
25
 
26
+
27
  # Overview of Model Zoo
28
 
29
+ <sup>(1): "-" means that this algorithm doesn't support this environment.</sup>
30
+ <sup>(2): "W" means that the corresponding model is in the upload waitinglist.</sup>
31
+
32
+ ### Deep Reinforcement Learning
33
 
34
  | Algo.\Env. | LunarLander | BipedalWalker | Pendulum | Atari (Pong) | Atari (SpaceInvaders) | Atari (Qbert) | MuJoCo (Hopper) | MuJoCo (Halfcheetah) | MuJoCo (Walker2d) |
35
  | ------------- | ------------- | ------------------------ | ------------ | -------------- | ------------ | ------------------ | --------- | --------- | --------- |
36
+ | [PPO](https://arxiv.org/pdf/1707.06347.pdf) | [](https://huggingface.co/OpenDILabCommunity/LunarLander-v2-ppo) | | | | | | | | |
37
+ | [PG](https://proceedings.neurips.cc/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf) | | | | | | | | | |
38
+ | [A2C](https://arxiv.org/pdf/1602.01783.pdf) | | | | | | | | | |
39
+ | [IMPALA](https://arxiv.org/pdf/1802.01561.pdf) | | | | | | | | | |
40
+ | [DQN](https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf) | | | | | | | - | - | - |
41
+ | [DDPG](https://arxiv.org/pdf/1509.02971.pdf) | | | | - | - | - | | | |
42
+ | [TD3](https://arxiv.org/pdf/1802.09477.pdf) | | | | - | - | - | | | |
43
+ | [SAC](https://arxiv.org/pdf/1801.01290.pdf) | | | | - | - | - | | | |
44
+
45
 
46
+ ### Multi-Agent Reinforcement Learning
47
  <details close>
48
  <summary>(Click for Details)</summary>
49
  TBD
50
  </details>
51
 
52
+ ### Offline Reinforcement Learning
53
  <details close>
54
  <summary>(Click for Details)</summary>
55
  TBD
56
  </details>
57
 
58
+ ### Model-Based Reinforcement Learning
59
  <details close>
60
  <summary>(Click for Details)</summary>
61
  TBD