zjowowen commited on
Commit
43d991e
·
1 Parent(s): 0a1b5e0

Add database.

Browse files
README.md CHANGED
@@ -1,5 +1,5 @@
1
  ---
2
- title: LightZero RAG
3
  emoji: 📖
4
  colorFrom: yellow
5
  colorTo: blue
@@ -58,7 +58,7 @@ QUESTION_LANG='cn' # The language of the question, currently available option is
58
 
59
  if __name__ == "__main__":
60
  # Assuming documents are already present locally
61
- file_path = './documents/LightZero_README.zh.md'
62
  # Load and split document
63
  chunks = load_and_split_document(file_path)
64
  # Create vector store
 
1
  ---
2
+ title: ZeroPal
3
  emoji: 📖
4
  colorFrom: yellow
5
  colorTo: blue
 
58
 
59
  if __name__ == "__main__":
60
  # Assuming documents are already present locally
61
+ file_path = './documents/LightZero_README_zh.md'
62
  # Load and split document
63
  chunks = load_and_split_document(file_path)
64
  # Create vector store
README_zh.md CHANGED
@@ -45,7 +45,7 @@ QUESTION_LANG='cn' # 问题语言,目前可选值为 'cn'
45
 
46
  if __name__ == "__main__":
47
  # 假设文档已存在于本地
48
- file_path = './documents/LightZero_README.zh.md'
49
  # 加载和分割文档
50
  chunks = load_and_split_document(file_path)
51
  # 创建向量存储
 
45
 
46
  if __name__ == "__main__":
47
  # 假设文档已存在于本地
48
+ file_path = './documents/LightZero_README_zh.md'
49
  # 加载和分割文档
50
  chunks = load_and_split_document(file_path)
51
  # 创建向量存储
analyze_conversation_history.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sqlite3
2
+
3
+
4
+ def analyze_conversation_history():
5
+ """
6
+ 分析对话历史数据库中的数据
7
+ """
8
+ # 连接到SQLite数据库
9
+ conn = sqlite3.connect('database/conversation_history.db')
10
+ c = conn.cursor()
11
+
12
+ # 获取总的对话记录数
13
+ c.execute("SELECT COUNT(*) FROM history")
14
+ total_records = c.fetchone()[0]
15
+ print(f"总对话记录数: {total_records}")
16
+
17
+ # 获取不同用户的对话记录数
18
+ c.execute("SELECT user_id, COUNT(*) as count FROM history GROUP BY user_id")
19
+ user_records = c.fetchall()
20
+ print("每个用户的对话记录数:")
21
+ for user_id, count in user_records:
22
+ print(f"用户 {user_id}: {count} 条记录")
23
+
24
+ # 获取平均对话轮数
25
+ c.execute("SELECT AVG(cnt) FROM (SELECT user_id, COUNT(*) as cnt FROM history GROUP BY user_id)")
26
+ avg_turns = c.fetchone()[0]
27
+ print(f"平均对话轮数: {avg_turns}")
28
+
29
+ # 获取最长的用户输入和助手输出
30
+ c.execute("SELECT MAX(LENGTH(user_input)) FROM history")
31
+ max_user_input_length = c.fetchone()[0]
32
+ print(f"最长的用户输入: {max_user_input_length} 个字符")
33
+
34
+ c.execute("SELECT MAX(LENGTH(assistant_output)) FROM history")
35
+ max_assistant_output_length = c.fetchone()[0]
36
+ print(f"最长的助手输出: {max_assistant_output_length} 个字符")
37
+
38
+ # 关闭游标
39
+ c.close()
40
+ # 关闭数据库连接
41
+ conn.close()
42
+
43
+
44
+ def clear_context():
45
+ """
46
+ 清除对话历史
47
+ """
48
+ # 连接到SQLite数据库
49
+ conn = sqlite3.connect('conversation_history.db')
50
+ c = conn.cursor()
51
+ c.execute("DELETE FROM history")
52
+ conn.commit()
53
+ return "", "", ""
54
+
55
+
56
+ def get_history():
57
+ """
58
+ 获取对话历史记录
59
+ """
60
+ # 连接到SQLite数据库
61
+ conn = sqlite3.connect('conversation_history.db')
62
+ c = conn.cursor()
63
+ c.execute("SELECT user_input, assistant_output FROM history")
64
+ rows = c.fetchall()
65
+ history = ""
66
+ for row in rows:
67
+ history += f"User: {row[0]}\nAssistant: {row[1]}\n\n"
68
+ return history
app.py CHANGED
@@ -1,9 +1,12 @@
1
  import os
 
 
2
 
3
  import gradio as gr
4
  from dotenv import load_dotenv
5
  from langchain.document_loaders import TextLoader
6
 
 
7
  from rag_demo import load_and_split_document, create_vector_store, setup_rag_chain, execute_query
8
 
9
  # 环境设置
@@ -12,122 +15,200 @@ QUESTION_LANG = os.getenv("QUESTION_LANG") # 从环境变量获取 QUESTION_LAN
12
  assert QUESTION_LANG in ['cn', 'en'], QUESTION_LANG
13
 
14
  if QUESTION_LANG == "cn":
15
- title = "LightZero RAG Demo"
16
  title_markdown = """
17
  <div align="center">
18
  <img src="https://raw.githubusercontent.com/puyuan1996/RAG/main/assets/banner.svg" width="80%" height="20%" alt="Banner Image">
19
  </div>
20
- <h2 style="text-align: center; color: black;"><a href="https://github.com/puyuan1996/RAG"> LightZero RAG Demo</a></h2>
21
- <h4 align="center"> 📢说明:请您在下面的"问题(Q)"框中输入任何关于 LightZero 的问题,然后点击"提交"按钮。右侧"回答(A)"框中会显示 RAG 模型给出的回答。在 QA 栏的下方会给出参考文档(其中检索得到的相关文段会用黄色高亮显示)。</h4>
22
- <h4 align="center"> 如果你喜欢这个项目,请给我们在 GitHub 点个 star ✨ 。我们将会持续保持更新。 </h4>
23
- <strong><h5 align="center">注意:算法模型的输出可能包含一定的随机性。相关结果不代表任何开发者和相关 AI 服务的态度和意见。本项目开发者不对生成结果作任何保证,仅供参考。<h5></strong>
 
 
 
 
24
  """
25
  tos_markdown = """
26
  ### 使用条款
27
- 玩家使用本服务须同意以下条款:
28
- 该服务是一项探索性研究预览版,仅供非商业用途。它仅提供有限的安全措施,并可能生成令人反感的内容。不得将其用于任何非法、有害、暴力、种族主义等目的。
29
- 如果您的游玩体验有不佳之处,请发送邮件至 [email protected] ! 我们将删除相关信息,并不断改进这个项目。
30
- 为了获得最佳体验,请使用台式电脑,因为移动设备可能会影响可视化效果。
31
- **版权所有 2024 OpenDILab。**
 
 
 
 
 
32
  """
33
 
34
- # 路径变量,方便之后的文件使用
35
- file_path = './documents/LightZero_README.zh.md'
36
 
37
  # 加载原始Markdown文档
38
  loader = TextLoader(file_path)
39
  orig_documents = loader.load()
40
 
41
  # 存储对话历史
42
- conversation_history = []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43
 
44
 
45
- def rag_answer(question, model_name, temperature, embedding_model, k):
46
  """
47
  处理用户问题并返回答案和高亮显示的上下文
48
 
49
  :param question: 用户输入的问题
50
- :param model_name: 使用的语言模型名称
51
  :param temperature: 生成答案时使用的温度参数
52
- :param embedding_model: 使用的嵌入模型
53
  :param k: 检索到的文档块数量
 
54
  :return: 模型生成的答案和高亮显示上下文的Markdown文本
55
  """
56
  try:
57
  chunks = load_and_split_document(file_path, chunk_size=5000, chunk_overlap=500)
58
- retriever = create_vector_store(chunks, model=embedding_model, k=k)
59
- rag_chain = setup_rag_chain(model_name=model_name, temperature=temperature)
60
 
61
- # 将问题添加到对话历史中
62
- conversation_history.append(("User", question))
63
 
64
- # 将对话历史转换为字符串
65
- history_str = "\n".join([f"{role}: {text}" for role, text in conversation_history])
66
 
67
- retrieved_documents, answer = execute_query(retriever, rag_chain, history_str, model_name=model_name,
 
 
68
  temperature=temperature)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69
  # 在文档中高亮显示上下文
70
  context = [retrieved_documents[i].page_content for i in range(len(retrieved_documents))]
71
  highlighted_document = orig_documents[0].page_content
72
  for i in range(len(context)):
73
  highlighted_document = highlighted_document.replace(context[i], f"<mark>{context[i]}</mark>")
74
 
75
- # 将回答添加到对话历史中
76
- conversation_history.append(("Assistant", answer))
 
77
  except Exception as e:
78
  print(f"An error occurred: {e}")
79
- return "处理您的问题时出现错误,请稍后再试。", ""
80
- return answer, highlighted_document
 
 
81
 
 
82
 
83
- def clear_context():
 
84
  """
85
  清除对话历史
86
  """
87
- global conversation_history
88
- conversation_history = []
89
- return "", ""
90
 
91
 
92
  if __name__ == "__main__":
93
- with gr.Blocks(title=title, theme='ParityError/Interstellar') as rag_demo:
94
  gr.Markdown(title_markdown)
95
 
96
  with gr.Row():
97
  with gr.Column():
 
 
 
98
  inputs = gr.Textbox(
99
- placeholder="请您输入任何关于 LightZero 的问题。",
100
- label="问题 (Q)")
101
- model_name = gr.Dropdown(
102
- choices=['kimi', 'abab6-chat', 'glm-4', 'gpt-3.5-turbo', 'gpt-4', 'gpt-4-turbo', 'azure_gpt-4', 'azure_gpt-35-turbo-16k', 'azure_gpt-35-turbo'],
103
- # value='azure_gpt-4',
104
- value='kimi',
105
- label="选择语言模型")
106
  temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.01, step=0.01, label="温度参数")
107
- embedding_model = gr.Dropdown(
108
- choices=['HuggingFace', 'TensorflowHub', 'OpenAI'],
109
- value='OpenAI',
110
- label="选择嵌入模型")
111
  k = gr.Slider(minimum=1, maximum=10, value=5, step=1, label="检索到的文档块数量")
112
  with gr.Row():
113
  gr_submit = gr.Button('提交')
114
  gr_clear = gr.Button('清除上下文')
115
 
116
- outputs_answer = gr.Textbox(placeholder="当你点击提交按钮后,这里会显示 RAG 模型给出的回答。",
117
- label="回答 (A)")
 
118
  with gr.Row():
119
- outputs_context = gr.Markdown(label="参考的文档,检索得到的 context 用高亮显示 (C)")
120
-
121
- gr.Markdown(tos_markdown)
122
-
123
  gr_submit.click(
124
  rag_answer,
125
- inputs=[inputs, model_name, temperature, embedding_model, k],
126
- outputs=[outputs_answer, outputs_context],
127
  )
128
- gr_clear.click(clear_context, outputs=[outputs_answer, outputs_context])
129
 
130
  concurrency = int(os.environ.get('CONCURRENCY', os.cpu_count()))
131
  favicon_path = os.path.join(os.path.dirname(__file__), 'assets', 'avatar.png')
132
- rag_demo.queue().launch(max_threads=concurrency, favicon_path=favicon_path, share=True)
133
-
 
 
 
1
  import os
2
+ import sqlite3
3
+ import threading
4
 
5
  import gradio as gr
6
  from dotenv import load_dotenv
7
  from langchain.document_loaders import TextLoader
8
 
9
+ from RAG.analyze_conversation_history import analyze_conversation_history
10
  from rag_demo import load_and_split_document, create_vector_store, setup_rag_chain, execute_query
11
 
12
  # 环境设置
 
15
  assert QUESTION_LANG in ['cn', 'en'], QUESTION_LANG
16
 
17
  if QUESTION_LANG == "cn":
18
+ title = "ZeroPal"
19
  title_markdown = """
20
  <div align="center">
21
  <img src="https://raw.githubusercontent.com/puyuan1996/RAG/main/assets/banner.svg" width="80%" height="20%" alt="Banner Image">
22
  </div>
23
+
24
+ 📢 **操作说明**:请在下方的“问题”框中输入关于 LightZero 的问题,并点击“提交”按钮。右侧的“回答”框将展示 RAG 模型提供的答案。
25
+ 您可以在问答框下方查看当前“对话历史”,点击“清除上下文”按钮可清空历史记录。在“对话历史”框下方,您将找到相关参考文档,其中相关文段将以黄色高亮显示。
26
+ 如果您喜欢这个项目,请在 GitHub [LightZero RAG Demo](https://github.com/puyuan1996/RAG) 上给我们点赞!✨ 您的支持是我们持续更新的动力。
27
+
28
+ <div align="center">
29
+ <strong>注意:算法模型输出可能包含一定的随机性。结果不代表开发者和相关 AI 服务的态度和意见。本项目开发者不对结果作出任何保证,仅供参考之用。使用该服务即代表同意后文所述的使用条款。</strong>
30
+ </div>
31
  """
32
  tos_markdown = """
33
  ### 使用条款
34
+
35
+ 使用本服务的玩家需同意以下条款:
36
+
37
+ - 本服务为探索性研究的预览版,仅供非商业用途。
38
+ - 服务不得用于任何非法、有害、暴力、种族主义或其他令人反感的目的。
39
+ - 服务提供有限的安全措施,并可能生成令人反感的内容。
40
+ - 如果您对服务体验不满,请通过 [email protected] 与我们联系!我们承诺修复问题并不断改进项目。
41
+ - 为了获得最佳体验,请使用台式电脑,因为移动设备可能会影响视觉效果。
42
+
43
+ **版权所有 © 2024 OpenDILab。保留所有权利。**
44
  """
45
 
46
+ # 路径变量,方便之后的文件使用
47
+ file_path = './documents/LightZero_README_zh.md'
48
 
49
  # 加载原始Markdown文档
50
  loader = TextLoader(file_path)
51
  orig_documents = loader.load()
52
 
53
  # 存储对话历史
54
+ conversation_history = {}
55
+
56
+ # 创建线程局部数据对象
57
+ threadLocal = threading.local()
58
+
59
+
60
+ def get_db_connection():
61
+ """
62
+ 返回当前线程的数据库连接
63
+ """
64
+ conn = getattr(threadLocal, 'conn', None)
65
+ if conn is None:
66
+ # 连接到SQLite数据库
67
+ conn = sqlite3.connect('database/conversation_history.db')
68
+ c = conn.cursor()
69
+ # Drop the existing 'history' table if it exists
70
+ # c.execute('DROP TABLE IF EXISTS history')
71
+ # 创建存储对话历史的表
72
+ c.execute('''CREATE TABLE IF NOT EXISTS history
73
+ (id INTEGER PRIMARY KEY AUTOINCREMENT,
74
+ user_id TEXT NOT NULL,
75
+ user_input TEXT NOT NULL,
76
+ assistant_output TEXT NOT NULL,
77
+ timestamp DATETIME DEFAULT CURRENT_TIMESTAMP)''')
78
+ threadLocal.conn = conn
79
+ return conn
80
+
81
+
82
+ def get_db_cursor():
83
+ """
84
+ 返回当前线程的数据库游标
85
+ """
86
+ conn = get_db_connection()
87
+ c = getattr(threadLocal, 'cursor', None)
88
+ if c is None:
89
+ c = conn.cursor()
90
+ threadLocal.cursor = c
91
+ return c
92
+
93
+
94
+ # 程序结束时清理数据库连接
95
+ def close_db_connection():
96
+ conn = getattr(threadLocal, 'conn', None)
97
+ if conn is not None:
98
+ conn.close()
99
+ setattr(threadLocal, 'conn', None)
100
+
101
+ c = getattr(threadLocal, 'cursor', None)
102
+ if c is not None:
103
+ c.close()
104
+ setattr(threadLocal, 'cursor', None)
105
 
106
 
107
+ def rag_answer(question, temperature, k, user_id):
108
  """
109
  处理用户问题并返回答案和高亮显示的上下文
110
 
111
  :param question: 用户输入的问题
 
112
  :param temperature: 生成答案时使用的温度参数
 
113
  :param k: 检索到的文档块数量
114
+ :param user_id: 用户ID
115
  :return: 模型生成的答案和高亮显示上下文的Markdown文本
116
  """
117
  try:
118
  chunks = load_and_split_document(file_path, chunk_size=5000, chunk_overlap=500)
119
+ retriever = create_vector_store(chunks, model='OpenAI', k=k)
120
+ rag_chain = setup_rag_chain(model_name='kimi', temperature=temperature)
121
 
122
+ if user_id not in conversation_history:
123
+ conversation_history[user_id] = []
124
 
125
+ conversation_history[user_id].append((f"User[{user_id}]", question))
 
126
 
127
+ history_str = "\n".join([f"{role}: {text}" for role, text in conversation_history[user_id]])
128
+
129
+ retrieved_documents, answer = execute_query(retriever, rag_chain, history_str, model_name='kimi',
130
  temperature=temperature)
131
+
132
+ ############################
133
+ # 获取当前线程的数据库连接和游标
134
+ ############################
135
+ conn = get_db_connection()
136
+ c = get_db_cursor()
137
+
138
+ # 分析对话历史
139
+ # analyze_conversation_history()
140
+ # 获取总的对话记录数
141
+ c.execute("SELECT COUNT(*) FROM history")
142
+ total_records = c.fetchone()[0]
143
+ print(f"总对话记录数: {total_records}")
144
+
145
+ # 将问题和回答存储到数据库
146
+ c.execute("INSERT INTO history (user_id, user_input, assistant_output) VALUES (?, ?, ?)",
147
+ (user_id, question, answer))
148
+ conn.commit()
149
+
150
  # 在文档中高亮显示上下文
151
  context = [retrieved_documents[i].page_content for i in range(len(retrieved_documents))]
152
  highlighted_document = orig_documents[0].page_content
153
  for i in range(len(context)):
154
  highlighted_document = highlighted_document.replace(context[i], f"<mark>{context[i]}</mark>")
155
 
156
+ conversation_history[user_id].append(("Assistant", answer))
157
+
158
+ full_history = "\n".join([f"{role}: {text}" for role, text in conversation_history[user_id]])
159
  except Exception as e:
160
  print(f"An error occurred: {e}")
161
+ return "处理您的问题时出现错误,请稍后再试。", "", ""
162
+ finally:
163
+ # 不再在这里关闭游标和连接
164
+ pass
165
 
166
+ return answer, highlighted_document, full_history
167
 
168
+
169
+ def clear_context(user_id):
170
  """
171
  清除对话历史
172
  """
173
+ if user_id in conversation_history:
174
+ conversation_history[user_id] = []
175
+ return "", "", ""
176
 
177
 
178
  if __name__ == "__main__":
179
+ with gr.Blocks(title=title, theme='ParityError/Interstellar') as zero_pal:
180
  gr.Markdown(title_markdown)
181
 
182
  with gr.Row():
183
  with gr.Column():
184
+ user_id = gr.Textbox(
185
+ placeholder="请输入您的真实姓名或昵称作为用户ID",
186
+ label="用户ID")
187
  inputs = gr.Textbox(
188
+ placeholder="请您在这里输入任何关于 LightZero 的问题。",
189
+ label="问题")
 
 
 
 
 
190
  temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.01, step=0.01, label="温度参数")
 
 
 
 
191
  k = gr.Slider(minimum=1, maximum=10, value=5, step=1, label="检索到的文档块数量")
192
  with gr.Row():
193
  gr_submit = gr.Button('提交')
194
  gr_clear = gr.Button('清除上下文')
195
 
196
+ outputs_answer = gr.Textbox(placeholder="当你点击提交按钮后,这里会显示 RAG 模型给出的回答。",
197
+ label="回答")
198
+ outputs_history = gr.Textbox(label="对话历史")
199
  with gr.Row():
200
+ outputs_context = gr.Markdown(label="参考的文档(检索得到的相关文段用高亮显示)")
201
+ gr_clear.click(clear_context, inputs=user_id, outputs=[outputs_context, outputs_history])
 
 
202
  gr_submit.click(
203
  rag_answer,
204
+ inputs=[inputs, temperature, k, user_id],
205
+ outputs=[outputs_answer, outputs_context, outputs_history],
206
  )
207
+ gr.Markdown(tos_markdown)
208
 
209
  concurrency = int(os.environ.get('CONCURRENCY', os.cpu_count()))
210
  favicon_path = os.path.join(os.path.dirname(__file__), 'assets', 'avatar.png')
211
+ zero_pal.queue().launch(max_threads=concurrency, favicon_path=favicon_path, share=True)
212
+
213
+ # 在合适的地方,例如程序退出时,调用close_db_connection函数
214
+ close_db_connection()
app_mqa.py CHANGED
@@ -1,9 +1,7 @@
1
  import os
2
-
3
  import gradio as gr
4
  from dotenv import load_dotenv
5
  from langchain.document_loaders import TextLoader
6
-
7
  from rag_demo import load_and_split_document, create_vector_store, setup_rag_chain, execute_query
8
 
9
  # 环境设置
@@ -12,27 +10,36 @@ QUESTION_LANG = os.getenv("QUESTION_LANG") # 从环境变量获取 QUESTION_LAN
12
  assert QUESTION_LANG in ['cn', 'en'], QUESTION_LANG
13
 
14
  if QUESTION_LANG == "cn":
15
- title = "LightZero RAG Demo"
16
  title_markdown = """
17
  <div align="center">
18
  <img src="https://raw.githubusercontent.com/puyuan1996/RAG/main/assets/banner.svg" width="80%" height="20%" alt="Banner Image">
19
  </div>
20
- <h2 style="text-align: center; color: black;"><a href="https://github.com/puyuan1996/RAG"> LightZero RAG Demo</a></h2>
21
- <h4 align="center"> 📢说明:请您在下面的"问题(Q)"框中输入任何关于 LightZero 的问题,然后点击"提交"按钮。右侧"回答(A)"框中会显示 RAG 模型给出的回答。在 QA 栏的下方会给出参考文档(其中检索得到的相关文段会用黄色高亮显示)。</h4>
22
- <h4 align="center"> 如果你喜欢这个项目,请给我们在 GitHub 点个 star ✨ 。我们将会持续保持更新。 </h4>
23
- <strong><h5 align="center">注意:算法模型的输出可能包含一定的随机性。相关结果不代表任何开发者和相关 AI 服务的态度和意见。本项目开发者不对生成结果作任何保证,仅供参考。<h5></strong>
 
 
 
 
24
  """
25
  tos_markdown = """
26
  ### 使用条款
27
- 玩家使用本服务须同意以下条款:
28
- 该服务是一项探索性研究预览版,仅供非商业用途。它仅提供有限的安全措施,并可能生成令人反感的内容。不得将其用于任何非法、有害、暴力、种族主义等目的。
29
- 如果您的游玩体验有不佳之处,请发送邮件至 [email protected] ! 我们将删除相关信息,并不断改进这个项目。
30
- 为了获得最佳体验,请使用台式电脑,因为移动设备可能会影响可视化效果。
31
- **版权所有 2024 OpenDILab。**
 
 
 
 
 
32
  """
33
 
34
  # 路径变量,方便之后的文件使用
35
- file_path = './documents/LightZero_README.zh.md'
36
 
37
  # 加载原始Markdown文档
38
  loader = TextLoader(file_path)
@@ -42,21 +49,19 @@ orig_documents = loader.load()
42
  conversation_history = []
43
 
44
 
45
- def rag_answer(question, model_name, temperature, embedding_model, k):
46
  """
47
  处理用户问题并返回答案和高亮显示的上下文
48
 
49
  :param question: 用户输入的问题
50
- :param model_name: 使用的语言模型名称
51
  :param temperature: 生成答案时使用的温度参数
52
- :param embedding_model: 使用的嵌入模型
53
  :param k: 检索到的文档块数量
54
  :return: 模型生成的答案和高亮显示上下文的Markdown文本
55
  """
56
  try:
57
  chunks = load_and_split_document(file_path, chunk_size=5000, chunk_overlap=500)
58
- retriever = create_vector_store(chunks, model=embedding_model, k=k)
59
- rag_chain = setup_rag_chain(model_name=model_name, temperature=temperature)
60
 
61
  # 将问题添加到对话历史中
62
  conversation_history.append(("User", question))
@@ -64,8 +69,9 @@ def rag_answer(question, model_name, temperature, embedding_model, k):
64
  # 将对话历史转换为字符串
65
  history_str = "\n".join([f"{role}: {text}" for role, text in conversation_history])
66
 
67
- retrieved_documents, answer = execute_query(retriever, rag_chain, history_str, model_name=model_name,
68
  temperature=temperature)
 
69
  # 在文档中高亮显示上下文
70
  context = [retrieved_documents[i].page_content for i in range(len(retrieved_documents))]
71
  highlighted_document = orig_documents[0].page_content
@@ -74,10 +80,17 @@ def rag_answer(question, model_name, temperature, embedding_model, k):
74
 
75
  # 将回答添加到对话历史中
76
  conversation_history.append(("Assistant", answer))
 
 
 
 
 
 
77
  except Exception as e:
78
  print(f"An error occurred: {e}")
79
- return "处理您的问题时出现错误,请稍后再试。", ""
80
- return answer, highlighted_document
 
81
 
82
 
83
  def clear_context():
@@ -86,28 +99,28 @@ def clear_context():
86
  """
87
  global conversation_history
88
  conversation_history = []
89
- return "", ""
 
 
 
 
 
 
 
 
 
90
 
91
 
92
  if __name__ == "__main__":
93
- with gr.Blocks(title=title, theme='ParityError/Interstellar') as rag_demo:
94
  gr.Markdown(title_markdown)
95
 
96
  with gr.Row():
97
  with gr.Column():
98
  inputs = gr.Textbox(
99
- placeholder="请您输入任何关于 LightZero 的问题。",
100
  label="问题 (Q)")
101
- model_name = gr.Dropdown(
102
- choices=['kimi', 'abab6-chat', 'glm-4', 'gpt-3.5-turbo', 'gpt-4', 'gpt-4-turbo', 'azure_gpt-4', 'azure_gpt-35-turbo-16k', 'azure_gpt-35-turbo'],
103
- # value='azure_gpt-4',
104
- value='kimi',
105
- label="选择语言模型")
106
  temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.01, step=0.01, label="温度参数")
107
- embedding_model = gr.Dropdown(
108
- choices=['HuggingFace', 'TensorflowHub', 'OpenAI'],
109
- value='OpenAI',
110
- label="选择嵌入模型")
111
  k = gr.Slider(minimum=1, maximum=10, value=5, step=1, label="检索到的文档块数量")
112
  with gr.Row():
113
  gr_submit = gr.Button('提交')
@@ -115,18 +128,17 @@ if __name__ == "__main__":
115
 
116
  outputs_answer = gr.Textbox(placeholder="当你点击提交按钮后,这里会显示 RAG 模型给出的回答。",
117
  label="回答 (A)")
 
118
  with gr.Row():
119
  outputs_context = gr.Markdown(label="参考的文档,检索得到的 context 用高亮显示 (C)")
120
-
121
- gr.Markdown(tos_markdown)
122
-
123
  gr_submit.click(
124
  rag_answer,
125
- inputs=[inputs, model_name, temperature, embedding_model, k],
126
- outputs=[outputs_answer, outputs_context],
127
  )
128
- gr_clear.click(clear_context, outputs=[outputs_answer, outputs_context])
129
 
130
  concurrency = int(os.environ.get('CONCURRENCY', os.cpu_count()))
131
  favicon_path = os.path.join(os.path.dirname(__file__), 'assets', 'avatar.png')
132
- rag_demo.queue().launch(max_threads=concurrency, favicon_path=favicon_path, share=True)
 
1
  import os
 
2
  import gradio as gr
3
  from dotenv import load_dotenv
4
  from langchain.document_loaders import TextLoader
 
5
  from rag_demo import load_and_split_document, create_vector_store, setup_rag_chain, execute_query
6
 
7
  # 环境设置
 
10
  assert QUESTION_LANG in ['cn', 'en'], QUESTION_LANG
11
 
12
  if QUESTION_LANG == "cn":
13
+ title = "ZeroPal"
14
  title_markdown = """
15
  <div align="center">
16
  <img src="https://raw.githubusercontent.com/puyuan1996/RAG/main/assets/banner.svg" width="80%" height="20%" alt="Banner Image">
17
  </div>
18
+
19
+ 📢 **操作说明**:请在下方的“问题”框中输入关于 LightZero 的问题,并点击“提交”按钮。右侧的“回答”框将展示 RAG 模型提供的答案。
20
+ 您可以在问答框下方查看当前“对话历史”,点击“清除上下文”按钮可清空历史记录。在“对话历史”框下方,您将找到相关参考文档,其中相关文段将以黄色高亮显示。
21
+ 如果您喜欢这个项目,请在 GitHub [LightZero RAG Demo](https://github.com/puyuan1996/RAG) 上给我们点赞!✨ 您的支持是我们持续更新的动力。
22
+
23
+ <div align="center">
24
+ <strong>注意:算法模型输出可能包含一定的随机性。结果不代表开发者和相关 AI 服务的态度和意见。本项目开发者不对结果作出任何保证,仅供参考之用。使用该服务即代表同意后文所述的使用条款。</strong>
25
+ </div>
26
  """
27
  tos_markdown = """
28
  ### 使用条款
29
+
30
+ 使用本服务的玩家需同意以下条款:
31
+
32
+ - 本服务为探索性研究的预览版,仅供非商业用途。
33
+ - 服务不得用于任何非法、有害、暴力、种族主义或其他令人反感的目的。
34
+ - 服务提供有限的安全措施,并可能生成令人反感的内容。
35
+ - 如果您对服务体验不满,请通过 [email protected] 与我们联系!我们承诺修复问题并不断改进项目。
36
+ - 为了获得最佳体验,请使用台式电脑,因为移动设备可能会影响视觉效果。
37
+
38
+ **版权所有 © 2024 OpenDILab。保留所有权利。**
39
  """
40
 
41
  # 路径变量,方便之后的文件使用
42
+ file_path = './documents/LightZero_README_zh.md'
43
 
44
  # 加载原始Markdown文档
45
  loader = TextLoader(file_path)
 
49
  conversation_history = []
50
 
51
 
52
+ def rag_answer(question, temperature, k):
53
  """
54
  处理用户问题并返回答案和高亮显示的上下文
55
 
56
  :param question: 用户输入的问题
 
57
  :param temperature: 生成答案时使用的温度参数
 
58
  :param k: 检索到的文档块数量
59
  :return: 模型生成的答案和高亮显示上下文的Markdown文本
60
  """
61
  try:
62
  chunks = load_and_split_document(file_path, chunk_size=5000, chunk_overlap=500)
63
+ retriever = create_vector_store(chunks, model='OpenAI', k=k)
64
+ rag_chain = setup_rag_chain(model_name='kimi', temperature=temperature)
65
 
66
  # 将问题添加到对话历史中
67
  conversation_history.append(("User", question))
 
69
  # 将对话历史转换为字符串
70
  history_str = "\n".join([f"{role}: {text}" for role, text in conversation_history])
71
 
72
+ retrieved_documents, answer = execute_query(retriever, rag_chain, history_str, model_name='kimi',
73
  temperature=temperature)
74
+
75
  # 在文档中高亮显示上下文
76
  context = [retrieved_documents[i].page_content for i in range(len(retrieved_documents))]
77
  highlighted_document = orig_documents[0].page_content
 
80
 
81
  # 将回答添加到对话历史中
82
  conversation_history.append(("Assistant", answer))
83
+
84
+ # 将对话历史存储到数据库中(此处省略数据库操作代码)
85
+
86
+ # 返回完整的对话历史
87
+ full_history = "\n".join([f"{role}: {text}" for role, text in conversation_history])
88
+
89
  except Exception as e:
90
  print(f"An error occurred: {e}")
91
+ return "处理您的问题时出现错误,请稍后再试。", "", ""
92
+
93
+ return answer, highlighted_document, full_history
94
 
95
 
96
  def clear_context():
 
99
  """
100
  global conversation_history
101
  conversation_history = []
102
+ return "", "", ""
103
+
104
+
105
+ def export_history():
106
+ """
107
+ 导出对话历史记录
108
+ """
109
+ # 从数据库中获取完整的对话历史记录(此处省略数据库操作代码)
110
+ exported_history = "对话历史记录:\n" + "\n".join([f"{role}: {text}" for role, text in conversation_history])
111
+ return exported_history
112
 
113
 
114
  if __name__ == "__main__":
115
+ with gr.Blocks(title=title, theme='ParityError/Interstellar') as zero_pal:
116
  gr.Markdown(title_markdown)
117
 
118
  with gr.Row():
119
  with gr.Column():
120
  inputs = gr.Textbox(
121
+ placeholder="请您在这里输入任何关于 LightZero 的问题。",
122
  label="问题 (Q)")
 
 
 
 
 
123
  temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.01, step=0.01, label="温度参数")
 
 
 
 
124
  k = gr.Slider(minimum=1, maximum=10, value=5, step=1, label="检索到的文档块数量")
125
  with gr.Row():
126
  gr_submit = gr.Button('提交')
 
128
 
129
  outputs_answer = gr.Textbox(placeholder="当你点击提交按钮后,这里会显示 RAG 模型给出的回答。",
130
  label="回答 (A)")
131
+ outputs_history = gr.Textbox(label="对话历史")
132
  with gr.Row():
133
  outputs_context = gr.Markdown(label="参考的文档,检索得到的 context 用高亮显示 (C)")
134
+ gr_clear.click(clear_context, outputs=[outputs_context, outputs_history])
 
 
135
  gr_submit.click(
136
  rag_answer,
137
+ inputs=[inputs, temperature, k],
138
+ outputs=[outputs_answer, outputs_context, outputs_history],
139
  )
140
+ gr.Markdown(tos_markdown)
141
 
142
  concurrency = int(os.environ.get('CONCURRENCY', os.cpu_count()))
143
  favicon_path = os.path.join(os.path.dirname(__file__), 'assets', 'avatar.png')
144
+ zero_pal.queue().launch(max_threads=concurrency, favicon_path=favicon_path, share=True)
app_mqa_database.py ADDED
@@ -0,0 +1,214 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import sqlite3
3
+ import threading
4
+
5
+ import gradio as gr
6
+ from dotenv import load_dotenv
7
+ from langchain.document_loaders import TextLoader
8
+
9
+ from RAG.analyze_conversation_history import analyze_conversation_history
10
+ from rag_demo import load_and_split_document, create_vector_store, setup_rag_chain, execute_query
11
+
12
+ # 环境设置
13
+ load_dotenv() # 加载环境变量
14
+ QUESTION_LANG = os.getenv("QUESTION_LANG") # 从环境变量获取 QUESTION_LANG
15
+ assert QUESTION_LANG in ['cn', 'en'], QUESTION_LANG
16
+
17
+ if QUESTION_LANG == "cn":
18
+ title = "ZeroPal"
19
+ title_markdown = """
20
+ <div align="center">
21
+ <img src="https://raw.githubusercontent.com/puyuan1996/RAG/main/assets/banner.svg" width="80%" height="20%" alt="Banner Image">
22
+ </div>
23
+
24
+ 📢 **操作说明**:请在下方的“问题”框中输入关于 LightZero 的问题,并点击“提交”按钮。右侧的“回答”框将展示 RAG 模型提供的答案。
25
+ 您可以在问答框下方查看当前“对话历史”,点击“清除上下文”按钮可清空历史记录。在“对话历史”框下方,您将找到相关参考文档,其中相关文段将以黄色高亮显示。
26
+ 如果您喜欢这个项目,请在 GitHub [LightZero RAG Demo](https://github.com/puyuan1996/RAG) 上给我们点赞!✨ 您的支持是我们持续更新的动力。
27
+
28
+ <div align="center">
29
+ <strong>注意:算法模型输出可能包含一定的随机性。结果不代表开发者和相关 AI 服务的态度和意见。本项目开发者不对结果作出任何保证,仅供参考之用。使用该服务即代表同意后文所述的使用条款。</strong>
30
+ </div>
31
+ """
32
+ tos_markdown = """
33
+ ### 使用条款
34
+
35
+ 使用本服务的玩家需同意以下条款:
36
+
37
+ - 本服务为探索性研究的预览版,仅供非商业用途。
38
+ - 服务不得用于任何非法、有害、暴力、种族主义或其他令人反感的目的。
39
+ - 服务提供有限的安全措施,并可能生成令人反感的内容。
40
+ - 如果您对服务体验不满,请通过 [email protected] 与我们联系!我们承诺修复问题并不断改进项目。
41
+ - 为了获得最佳体验,请使用台式电脑,因为移动设备可能会影响视觉效果。
42
+
43
+ **版权所有 © 2024 OpenDILab。保留所有权利。**
44
+ """
45
+
46
+ # 路径变量,方便之后的文件使用
47
+ file_path = './documents/LightZero_README_zh.md'
48
+
49
+ # 加载原始Markdown文档
50
+ loader = TextLoader(file_path)
51
+ orig_documents = loader.load()
52
+
53
+ # 存储对话历史
54
+ conversation_history = {}
55
+
56
+ # 创建线程局部数据对象
57
+ threadLocal = threading.local()
58
+
59
+
60
+ def get_db_connection():
61
+ """
62
+ 返回当前线程的数据库连接
63
+ """
64
+ conn = getattr(threadLocal, 'conn', None)
65
+ if conn is None:
66
+ # 连接到SQLite数据库
67
+ conn = sqlite3.connect('database/conversation_history.db')
68
+ c = conn.cursor()
69
+ # Drop the existing 'history' table if it exists
70
+ # c.execute('DROP TABLE IF EXISTS history')
71
+ # 创建存储对话历史的表
72
+ c.execute('''CREATE TABLE IF NOT EXISTS history
73
+ (id INTEGER PRIMARY KEY AUTOINCREMENT,
74
+ user_id TEXT NOT NULL,
75
+ user_input TEXT NOT NULL,
76
+ assistant_output TEXT NOT NULL,
77
+ timestamp DATETIME DEFAULT CURRENT_TIMESTAMP)''')
78
+ threadLocal.conn = conn
79
+ return conn
80
+
81
+
82
+ def get_db_cursor():
83
+ """
84
+ 返回当前线程的数据库游标
85
+ """
86
+ conn = get_db_connection()
87
+ c = getattr(threadLocal, 'cursor', None)
88
+ if c is None:
89
+ c = conn.cursor()
90
+ threadLocal.cursor = c
91
+ return c
92
+
93
+
94
+ # 程序结束时清理数据库连接
95
+ def close_db_connection():
96
+ conn = getattr(threadLocal, 'conn', None)
97
+ if conn is not None:
98
+ conn.close()
99
+ setattr(threadLocal, 'conn', None)
100
+
101
+ c = getattr(threadLocal, 'cursor', None)
102
+ if c is not None:
103
+ c.close()
104
+ setattr(threadLocal, 'cursor', None)
105
+
106
+
107
+ def rag_answer(question, temperature, k, user_id):
108
+ """
109
+ 处理用户问题并返回答案和高亮显示的上下文
110
+
111
+ :param question: 用户输入的问题
112
+ :param temperature: 生成答案时使用的温度参数
113
+ :param k: 检索到的文档块数量
114
+ :param user_id: 用户ID
115
+ :return: 模型生成的答案和高亮显示上下文的Markdown文本
116
+ """
117
+ try:
118
+ chunks = load_and_split_document(file_path, chunk_size=5000, chunk_overlap=500)
119
+ retriever = create_vector_store(chunks, model='OpenAI', k=k)
120
+ rag_chain = setup_rag_chain(model_name='kimi', temperature=temperature)
121
+
122
+ if user_id not in conversation_history:
123
+ conversation_history[user_id] = []
124
+
125
+ conversation_history[user_id].append((f"User[{user_id}]", question))
126
+
127
+ history_str = "\n".join([f"{role}: {text}" for role, text in conversation_history[user_id]])
128
+
129
+ retrieved_documents, answer = execute_query(retriever, rag_chain, history_str, model_name='kimi',
130
+ temperature=temperature)
131
+
132
+ ############################
133
+ # 获取当前线程的数据库连接和游标
134
+ ############################
135
+ conn = get_db_connection()
136
+ c = get_db_cursor()
137
+
138
+ # 分析对话历史
139
+ # analyze_conversation_history()
140
+ # 获取总的对话记录数
141
+ c.execute("SELECT COUNT(*) FROM history")
142
+ total_records = c.fetchone()[0]
143
+ print(f"总对话记录数: {total_records}")
144
+
145
+ # 将问题和回答存储到数据库
146
+ c.execute("INSERT INTO history (user_id, user_input, assistant_output) VALUES (?, ?, ?)",
147
+ (user_id, question, answer))
148
+ conn.commit()
149
+
150
+ # 在文档中高亮显示上下文
151
+ context = [retrieved_documents[i].page_content for i in range(len(retrieved_documents))]
152
+ highlighted_document = orig_documents[0].page_content
153
+ for i in range(len(context)):
154
+ highlighted_document = highlighted_document.replace(context[i], f"<mark>{context[i]}</mark>")
155
+
156
+ conversation_history[user_id].append(("Assistant", answer))
157
+
158
+ full_history = "\n".join([f"{role}: {text}" for role, text in conversation_history[user_id]])
159
+ except Exception as e:
160
+ print(f"An error occurred: {e}")
161
+ return "处理您的问题时出现错误,请稍后再试。", "", ""
162
+ finally:
163
+ # 不再在这里关闭游标和连接
164
+ pass
165
+
166
+ return answer, highlighted_document, full_history
167
+
168
+
169
+ def clear_context(user_id):
170
+ """
171
+ 清除对话历史
172
+ """
173
+ if user_id in conversation_history:
174
+ conversation_history[user_id] = []
175
+ return "", "", ""
176
+
177
+
178
+ if __name__ == "__main__":
179
+ with gr.Blocks(title=title, theme='ParityError/Interstellar') as zero_pal:
180
+ gr.Markdown(title_markdown)
181
+
182
+ with gr.Row():
183
+ with gr.Column():
184
+ user_id = gr.Textbox(
185
+ placeholder="请输入您的真实姓名或昵称作为用户ID",
186
+ label="用户ID")
187
+ inputs = gr.Textbox(
188
+ placeholder="请您在这里输入任何关于 LightZero 的问题。",
189
+ label="问题")
190
+ temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.01, step=0.01, label="温度参数")
191
+ k = gr.Slider(minimum=1, maximum=10, value=5, step=1, label="检索到的文档块数量")
192
+ with gr.Row():
193
+ gr_submit = gr.Button('提交')
194
+ gr_clear = gr.Button('清除上下文')
195
+
196
+ outputs_answer = gr.Textbox(placeholder="当你点击提交按钮后,这里会显示 RAG 模型给出的回答。",
197
+ label="回答")
198
+ outputs_history = gr.Textbox(label="对话历史")
199
+ with gr.Row():
200
+ outputs_context = gr.Markdown(label="参考的文档(检索得到的相关文段用高亮显示)")
201
+ gr_clear.click(clear_context, inputs=user_id, outputs=[outputs_context, outputs_history])
202
+ gr_submit.click(
203
+ rag_answer,
204
+ inputs=[inputs, temperature, k, user_id],
205
+ outputs=[outputs_answer, outputs_context, outputs_history],
206
+ )
207
+ gr.Markdown(tos_markdown)
208
+
209
+ concurrency = int(os.environ.get('CONCURRENCY', os.cpu_count()))
210
+ favicon_path = os.path.join(os.path.dirname(__file__), 'assets', 'avatar.png')
211
+ zero_pal.queue().launch(max_threads=concurrency, favicon_path=favicon_path, share=True)
212
+
213
+ # 在合适的地方,例如程序退出时,调用close_db_connection函数
214
+ close_db_connection()
app_qa.py DELETED
@@ -1,106 +0,0 @@
1
- import os
2
-
3
- import gradio as gr
4
- from dotenv import load_dotenv
5
- from langchain.document_loaders import TextLoader
6
-
7
- from rag_demo import load_and_split_document, create_vector_store, setup_rag_chain, execute_query
8
-
9
- # 环境设置
10
- load_dotenv() # 加载环境变量
11
- QUESTION_LANG = os.getenv("QUESTION_LANG") # 从环境变量获取 QUESTION_LANG
12
- assert QUESTION_LANG in ['cn', 'en'], QUESTION_LANG
13
-
14
- if QUESTION_LANG == "cn":
15
- title = "LightZero RAG Demo"
16
- title_markdown = """
17
- <div align="center">
18
- <img src="https://raw.githubusercontent.com/puyuan1996/RAG/main/assets/banner.svg" width="80%" height="20%" alt="Banner Image">
19
- </div>
20
- <h2 style="text-align: center; color: black;"><a href="https://github.com/puyuan1996/RAG"> LightZero RAG Demo</a></h2>
21
- <h4 align="center"> 📢说明:请您在下面的"问题(Q)"框中输入任何关于 LightZero 的问题,然后点击"提交"按钮。右侧"回答(A)"框中会显示 RAG 模型给出的回答。在 QA 栏的下方会给出参考文档(其中检索得到的相关文段会用黄色高亮显示)。</h4>
22
- <h4 align="center"> 如果你喜欢这个项目,请给我们在 GitHub 点个 star ✨ 。我们将会持续保持更新。 </h4>
23
- <strong><h5 align="center">注意:算法模型的输出可能包含一定的随机性。相关结果不代表任何开发者和相关 AI 服务的态度和意见。本项目开发者不对生成结果作任何保证,仅供参考。<h5></strong>
24
- """
25
- tos_markdown = """
26
- ### 使用条款
27
- 玩家使用本服务须同意以下条款:
28
- 该服务是一项探索性研究预览版,仅供非商业用途。它仅提供有限的安全措施,并可能生成令人反感的内容。不得将其用于任何非法、有害、暴力、种族主义等目的。
29
- 如果您的游玩体验有不佳之处,请发送邮件至 [email protected] ! 我们将删除相关信息,并不断改进这个项目。
30
- 为了获得最佳体验,请使用台式电脑,因为移动设备可能会影响可视化效果。
31
- **版权所有 2024 OpenDILab。**
32
- """
33
-
34
- # 路径变量,方便之后的文件使用
35
- file_path = './documents/LightZero_README.zh.md'
36
-
37
- # 加载原始Markdown文档
38
- loader = TextLoader(file_path)
39
- orig_documents = loader.load()
40
-
41
- def rag_answer(question, model_name, temperature, embedding_model, k):
42
- """
43
- 处理用户问题并返回答案和高亮显示的上下文
44
-
45
- :param question: 用户输入的问题
46
- :param model_name: 使用的语言模型名称
47
- :param temperature: 生成答案时使用的温度参数
48
- :param embedding_model: 使用的嵌入模型
49
- :param k: 检索到的文档块数量
50
- :return: 模型生成的答案和高亮显示上下文的Markdown文本
51
- """
52
- try:
53
- chunks = load_and_split_document(file_path, chunk_size=5000, chunk_overlap=500)
54
- retriever = create_vector_store(chunks, model=embedding_model, k=k)
55
- rag_chain = setup_rag_chain(model_name=model_name, temperature=temperature)
56
-
57
- retrieved_documents, answer = execute_query(retriever, rag_chain, question, model_name=model_name, temperature=temperature)
58
- # 在文档中高亮显示上下文
59
- context = [retrieved_documents[i].page_content for i in range(len(retrieved_documents))]
60
- highlighted_document = orig_documents[0].page_content
61
- for i in range(len(context)):
62
- highlighted_document = highlighted_document.replace(context[i], f"<mark>{context[i]}</mark>")
63
- except Exception as e:
64
- print(f"An error occurred: {e}")
65
- return "处理您的问题时出现错误,请稍后再试。", ""
66
- return answer, highlighted_document
67
-
68
-
69
- if __name__ == "__main__":
70
- with gr.Blocks(title=title, theme='ParityError/Interstellar') as rag_demo:
71
- gr.Markdown(title_markdown)
72
-
73
- with gr.Row():
74
- with gr.Column():
75
- inputs = gr.Textbox(
76
- placeholder="请您输入任何关于 LightZero 的问题。",
77
- label="问题 (Q)")
78
- model_name = gr.Dropdown(
79
- choices=['kimi', 'abab6-chat', 'glm-4', 'gpt-3.5-turbo', 'gpt-4', 'gpt-4-turbo', 'azure_gpt-4', 'azure_gpt-35-turbo-16k', 'azure_gpt-35-turbo'],
80
- # value='azure_gpt-4',
81
- value='kimi',
82
- label="选择语言模型")
83
- temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.01, step=0.01, label="温度参数")
84
- embedding_model = gr.Dropdown(
85
- choices=['HuggingFace', 'TensorflowHub', 'OpenAI'],
86
- value='OpenAI',
87
- label="选择嵌入模型")
88
- k = gr.Slider(minimum=1, maximum=10, value=5, step=1, label="检索到的文档块数量")
89
- gr_submit = gr.Button('提交')
90
-
91
- outputs_answer = gr.Textbox(placeholder="当你点击提交按钮后,这里会显示 RAG 模型给出的回答。",
92
- label="回答 (A)")
93
- with gr.Row():
94
- outputs_context = gr.Markdown(label="参考的文档,检索得到的 context 用高亮显示 (C)")
95
-
96
- gr.Markdown(tos_markdown)
97
-
98
- gr_submit.click(
99
- rag_answer,
100
- inputs=[inputs, model_name, temperature, embedding_model, k],
101
- outputs=[outputs_answer, outputs_context],
102
- )
103
-
104
- concurrency = int(os.environ.get('CONCURRENCY', os.cpu_count()))
105
- favicon_path = os.path.join(os.path.dirname(__file__), 'assets', 'avatar.png')
106
- rag_demo.queue().launch(max_threads=concurrency, favicon_path=favicon_path, share=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
assets/banner.svg CHANGED
documents/LightZero_README.md CHANGED
@@ -27,7 +27,7 @@
27
  [![Contributors](https://img.shields.io/github/contributors/opendilab/LightZero)](https://github.com/opendilab/LightZero/graphs/contributors)
28
  [![GitHub license](https://img.shields.io/github/license/opendilab/LightZero)](https://github.com/opendilab/LightZero/blob/master/LICENSE)
29
 
30
- Updated on 2023.12.07 LightZero-v0.0.3
31
 
32
  > LightZero is a lightweight, efficient, and easy-to-understand open-source algorithm toolkit that combines Monte Carlo Tree Search (MCTS) and Deep Reinforcement Learning (RL).
33
 
@@ -207,6 +207,15 @@ cd LightZero
207
  python3 -u zoo/board_games/tictactoe/config/tictactoe_muzero_bot_mode_config.py
208
  ```
209
 
 
 
 
 
 
 
 
 
 
210
  ## Benchmark
211
 
212
  <details open><summary>Click to collapse</summary>
@@ -374,6 +383,14 @@ Here is a collection of research papers about **Monte Carlo Tree Search**.
374
  - ExpEnv: USPTO datasets
375
  - [Code](https://github.com/binghong-ml/retro_star)
376
  #### ICLR
 
 
 
 
 
 
 
 
377
  - [Become a Proficient Player with Limited Data through Watching Pure Videos](https://openreview.net/pdf?id=Sy-o2N0hF4f) 2023
378
  - Weirui Ye, Yunsheng Zhang, Pieter Abbeel, Yang Gao
379
  - Key: pre-training from action-free videos, forward-inverse cycle consistency (FICC) objective based on vector quantization, pre-training phase, fine-tuning phase.
@@ -442,6 +459,10 @@ Here is a collection of research papers about **Monte Carlo Tree Search**.
442
  - Yangqing Fu, Ming Sun, Buqing Nie, Yue Gao
443
  - Key: probability tree state abstraction, transitivity and aggregation error bound
444
  - ExpEnv: Atari, CartPole, LunarLander, Gomoku
 
 
 
 
445
  - [Planning for Sample Efficient Imitation Learning](https://openreview.net/forum?id=BkN5UoAqF7) 2022
446
  - Zhao-Heng Yin, Weirui Ye, Qifeng Chen, Yang Gao
447
  - Key: Behavioral Cloning,Adversarial Imitation Learning (AIL),MCTS-based RL.
@@ -485,6 +506,7 @@ Here is a collection of research papers about **Monte Carlo Tree Search**.
485
  - [Code](https://github.com/matthewfaw/mixnmatch)
486
 
487
  #### Other Conference or Journal
 
488
  - [On Monte Carlo Tree Search and Reinforcement Learning](https://www.jair.org/index.php/jair/article/download/11099/26289/20632) Journal of Artificial Intelligence Research 2017.
489
  - [Sample-Efficient Neural Architecture Search by Learning Actions for Monte Carlo Tree Search](https://arxiv.org/pdf/1906.06832) IEEE Transactions on Pattern Analysis and Machine Intelligence 2022.
490
  </details>
 
27
  [![Contributors](https://img.shields.io/github/contributors/opendilab/LightZero)](https://github.com/opendilab/LightZero/graphs/contributors)
28
  [![GitHub license](https://img.shields.io/github/license/opendilab/LightZero)](https://github.com/opendilab/LightZero/blob/master/LICENSE)
29
 
30
+ Updated on 2024.03.15 LightZero-v0.0.4
31
 
32
  > LightZero is a lightweight, efficient, and easy-to-understand open-source algorithm toolkit that combines Monte Carlo Tree Search (MCTS) and Deep Reinforcement Learning (RL).
33
 
 
207
  python3 -u zoo/board_games/tictactoe/config/tictactoe_muzero_bot_mode_config.py
208
  ```
209
 
210
+ ## Customization Documentation
211
+
212
+ For those looking to tailor environments and algorithms, we offer comprehensive guides:
213
+
214
+ - **Environments:** [Customize Environments](https://github.com/opendilab/LightZero/blob/main/docs/source/tutorials/envs/customize_envs.md)
215
+ - **Algorithms:** [Customize Algorithms](https://github.com/opendilab/LightZero/blob/main/docs/source/tutorials/algos/customize_algos.md)
216
+
217
+ Should you have any questions, feel free to contact us for support.
218
+
219
  ## Benchmark
220
 
221
  <details open><summary>Click to collapse</summary>
 
383
  - ExpEnv: USPTO datasets
384
  - [Code](https://github.com/binghong-ml/retro_star)
385
  #### ICLR
386
+ - [The Update Equivalence Framework for Decision-Time Planning](https://openreview.net/forum?id=JXGph215fL) 2024
387
+ - Samuel Sokota, Gabriele Farina, David J Wu, Hengyuan Hu, Kevin A. Wang, J Zico Kolter, Noam Brown
388
+ - Key: imperfect-information games, search, decision-time planning, update equivalence
389
+ - ExpEnv: Hanabi, 3x3 Abrupt Dark Hex and Phantom Tic-Tac-Toe
390
+ - [Efficient Multi-agent Reinforcement Learning by Planning](https://openreview.net/forum?id=CpnKq3UJwp) 2024
391
+ - Qihan Liu, Jianing Ye, Xiaoteng Ma, Jun Yang, Bin Liang, Chongjie Zhang
392
+ - Key: multi-agent reinforcement learning, planning, multi-agent MCTS
393
+ - ExpEnv: SMAC, LunarLander, MuJoCo, and Google Research Football
394
  - [Become a Proficient Player with Limited Data through Watching Pure Videos](https://openreview.net/pdf?id=Sy-o2N0hF4f) 2023
395
  - Weirui Ye, Yunsheng Zhang, Pieter Abbeel, Yang Gao
396
  - Key: pre-training from action-free videos, forward-inverse cycle consistency (FICC) objective based on vector quantization, pre-training phase, fine-tuning phase.
 
459
  - Yangqing Fu, Ming Sun, Buqing Nie, Yue Gao
460
  - Key: probability tree state abstraction, transitivity and aggregation error bound
461
  - ExpEnv: Atari, CartPole, LunarLander, Gomoku
462
+ - [Spending Thinking Time Wisely: Accelerating MCTS with Virtual Expansions](https://openreview.net/pdf?id=B_LdLljS842) 2022
463
+ - Weirui Ye, Pieter Abbeel, Yang Gao
464
+ - Key: trade off computation versus performancem, virtual expansions, spend thinking time adaptively.
465
+ - ExpEnv: Atari, 9x9 Go
466
  - [Planning for Sample Efficient Imitation Learning](https://openreview.net/forum?id=BkN5UoAqF7) 2022
467
  - Zhao-Heng Yin, Weirui Ye, Qifeng Chen, Yang Gao
468
  - Key: Behavioral Cloning,Adversarial Imitation Learning (AIL),MCTS-based RL.
 
506
  - [Code](https://github.com/matthewfaw/mixnmatch)
507
 
508
  #### Other Conference or Journal
509
+ - [Learning to Stop: Dynamic Simulation Monte-Carlo Tree Search](https://arxiv.org/pdf/2012.07910.pdf) AAAI 2021.
510
  - [On Monte Carlo Tree Search and Reinforcement Learning](https://www.jair.org/index.php/jair/article/download/11099/26289/20632) Journal of Artificial Intelligence Research 2017.
511
  - [Sample-Efficient Neural Architecture Search by Learning Actions for Monte Carlo Tree Search](https://arxiv.org/pdf/1906.06832) IEEE Transactions on Pattern Analysis and Machine Intelligence 2022.
512
  </details>
documents/{LightZero_README.zh.md → LightZero_README_zh.md} RENAMED
@@ -27,7 +27,7 @@
27
  [![Contributors](https://img.shields.io/github/contributors/opendilab/LightZero)](https://github.com/opendilab/LightZero/graphs/contributors)
28
  [![GitHub license](https://img.shields.io/github/license/opendilab/LightZero)](https://github.com/opendilab/LightZero/blob/master/LICENSE)
29
 
30
- 最近更新于 2023.12.07 LightZero-v0.0.3
31
 
32
  > LightZero 是一个轻量、高效、易懂的 MCTS+RL 开源算法库。
33
 
@@ -191,6 +191,14 @@ python3 -u zoo/atari/config/atari_muzero_config.py
191
  cd LightZero
192
  python3 -u zoo/board_games/tictactoe/config/tictactoe_muzero_bot_mode_config.py
193
  ```
 
 
 
 
 
 
 
 
194
 
195
  ## 基线算法比较
196
 
@@ -352,7 +360,7 @@ python3 -u zoo/board_games/tictactoe/config/tictactoe_muzero_bot_mode_config.py
352
  - ExpEnv: Gridworld and SysAdmin
353
  - [Efficient Learning for AlphaZero via Path Consistency](https://proceedings.mlr.press/v162/zhao22h/zhao22h.pdf) 2022
354
  - Dengwei Zhao, Shikui Tu, Lei Xu
355
- - Key: limited amount of self-plays, path consistency (PC) optimality
356
  - ExpEnv: Go, Othello, Gomoku
357
  - [Visualizing MuZero Models](https://arxiv.org/abs/2102.12924) 2021
358
  - Joery A. de Vries, Ken S. Voskuil, Thomas M. Moerland, Aske Plaat
@@ -361,7 +369,7 @@ python3 -u zoo/board_games/tictactoe/config/tictactoe_muzero_bot_mode_config.py
361
  and internal state transition dynamics,
362
  - [Convex Regularization in Monte-Carlo Tree Search](https://arxiv.org/pdf/2007.00391.pdf) 2021
363
  - Tuan Dam, Carlo D'Eramo, Jan Peters, Joni Pajarinen
364
- - Key: entropy-regularization backup operators, regret analysis, Tsallis etropy,
365
  - ExpEnv: synthetic tree, Atari
366
  - [Information Particle Filter Tree: An Online Algorithm for POMDPs with Belief-Based Rewards on Continuous Domains](http://proceedings.mlr.press/v119/fischer20a/fischer20a.pdf) 2020
367
  - Johannes Fischer, Ömer Sahin Tas
@@ -374,6 +382,14 @@ and internal state transition dynamics,
374
  - ExpEnv: USPTO datasets
375
  - [Code](https://github.com/binghong-ml/retro_star)
376
  #### ICLR
 
 
 
 
 
 
 
 
377
  - [Become a Proficient Player with Limited Data through Watching Pure Videos](https://openreview.net/pdf?id=Sy-o2N0hF4f) 2023
378
  - Weirui Ye, Yunsheng Zhang, Pieter Abbeel, Yang Gao
379
  - Key: pre-training from action-free videos, forward-inverse cycle consistency (FICC) objective based on vector quantization, pre-training phase, fine-tuning phase.
@@ -421,8 +437,8 @@ and internal state transition dynamics,
421
  - Binghong Chen, Bo Dai, Qinjie Lin, Guo Ye, Han Liu, Le Song
422
  - Key: meta path planning algorithm, exploits a novel neural architecture which can learn promising search directions from problem structures.
423
  - ExpEnv: a 2d workspace with a 2 DoF (degrees of freedom) point robot, a 3 DoF stick robot and a 5 DoF snake robot
424
- #### NeurIPS
425
 
 
426
  - [LightZero: A Unified Benchmark for Monte Carlo Tree Search in General Sequential Decision Scenarios](https://openreview.net/pdf?id=oIUXpBnyjv) 2023
427
  - Yazhe Niu, Yuan Pu, Zhenjie Yang, Xueyan Li, Tong Zhou, Jiyuan Ren, Shuai Hu, Hongsheng Li, Yu Liu
428
  - Key: the first unified benchmark for deploying MCTS/MuZero in general sequential decision scenarios.
@@ -443,6 +459,10 @@ and internal state transition dynamics,
443
  - Yangqing Fu, Ming Sun, Buqing Nie, Yue Gao
444
  - Key: probability tree state abstraction, transitivity and aggregation error bound
445
  - ExpEnv: Atari, CartPole, LunarLander, Gomoku
 
 
 
 
446
  - [Planning for Sample Efficient Imitation Learning](https://openreview.net/forum?id=BkN5UoAqF7) 2022
447
  - Zhao-Heng Yin, Weirui Ye, Qifeng Chen, Yang Gao
448
  - Key: Behavioral Cloning,Adversarial Imitation Learning (AIL),MCTS-based RL,
@@ -486,6 +506,7 @@ and internal state transition dynamics,
486
  - [Code](https://github.com/matthewfaw/mixnmatch)
487
 
488
  #### Other Conference or Journal
 
489
  - [On Monte Carlo Tree Search and Reinforcement Learning](https://www.jair.org/index.php/jair/article/download/11099/26289/20632) Journal of Artificial Intelligence Research 2017.
490
  - [Sample-Efficient Neural Architecture Search by Learning Actions for Monte Carlo Tree Search](https://arxiv.org/pdf/1906.06832) IEEE Transactions on Pattern Analysis and Machine Intelligence 2022.
491
  </details>
 
27
  [![Contributors](https://img.shields.io/github/contributors/opendilab/LightZero)](https://github.com/opendilab/LightZero/graphs/contributors)
28
  [![GitHub license](https://img.shields.io/github/license/opendilab/LightZero)](https://github.com/opendilab/LightZero/blob/master/LICENSE)
29
 
30
+ 最近更新于 2024.03.15 LightZero-v0.0.4
31
 
32
  > LightZero 是一个轻量、高效、易懂的 MCTS+RL 开源算法库。
33
 
 
191
  cd LightZero
192
  python3 -u zoo/board_games/tictactoe/config/tictactoe_muzero_bot_mode_config.py
193
  ```
194
+ ## 定制化文档
195
+
196
+ 为希望定制环境和算法的用户,我们提供了全面的指南:
197
+
198
+ - **环境定制:** [定制环境](https://github.com/opendilab/LightZero/blob/main/docs/source/tutorials/envs/customize_envs_zh.md)
199
+ - **算法定制:** [定制算法](https://github.com/opendilab/LightZero/blob/main/docs/source/tutorials/algos/customize_algos_zh.md)
200
+
201
+ 如有任何疑问,欢迎随时联系我们寻求帮助。
202
 
203
  ## 基线算法比较
204
 
 
360
  - ExpEnv: Gridworld and SysAdmin
361
  - [Efficient Learning for AlphaZero via Path Consistency](https://proceedings.mlr.press/v162/zhao22h/zhao22h.pdf) 2022
362
  - Dengwei Zhao, Shikui Tu, Lei Xu
363
+ - Key: limited amount of self-plays, path consistency (PC) optimality
364
  - ExpEnv: Go, Othello, Gomoku
365
  - [Visualizing MuZero Models](https://arxiv.org/abs/2102.12924) 2021
366
  - Joery A. de Vries, Ken S. Voskuil, Thomas M. Moerland, Aske Plaat
 
369
  and internal state transition dynamics,
370
  - [Convex Regularization in Monte-Carlo Tree Search](https://arxiv.org/pdf/2007.00391.pdf) 2021
371
  - Tuan Dam, Carlo D'Eramo, Jan Peters, Joni Pajarinen
372
+ - Key: entropy-regularization backup operators, regret analysis, Tsallis etropy
373
  - ExpEnv: synthetic tree, Atari
374
  - [Information Particle Filter Tree: An Online Algorithm for POMDPs with Belief-Based Rewards on Continuous Domains](http://proceedings.mlr.press/v119/fischer20a/fischer20a.pdf) 2020
375
  - Johannes Fischer, Ömer Sahin Tas
 
382
  - ExpEnv: USPTO datasets
383
  - [Code](https://github.com/binghong-ml/retro_star)
384
  #### ICLR
385
+ - [The Update Equivalence Framework for Decision-Time Planning](https://openreview.net/forum?id=JXGph215fL) 2024
386
+ - Samuel Sokota, Gabriele Farina, David J Wu, Hengyuan Hu, Kevin A. Wang, J Zico Kolter, Noam Brown
387
+ - Key: imperfect-information games, search, decision-time planning, update equivalence
388
+ - ExpEnv: Hanabi, 3x3 Abrupt Dark Hex and Phantom Tic-Tac-Toe
389
+ - [Efficient Multi-agent Reinforcement Learning by Planning](https://openreview.net/forum?id=CpnKq3UJwp) 2024
390
+ - Qihan Liu, Jianing Ye, Xiaoteng Ma, Jun Yang, Bin Liang, Chongjie Zhang
391
+ - Key: multi-agent reinforcement learning, planning, multi-agent MCTS
392
+ - ExpEnv: SMAC, LunarLander, MuJoCo, and Google Research Football
393
  - [Become a Proficient Player with Limited Data through Watching Pure Videos](https://openreview.net/pdf?id=Sy-o2N0hF4f) 2023
394
  - Weirui Ye, Yunsheng Zhang, Pieter Abbeel, Yang Gao
395
  - Key: pre-training from action-free videos, forward-inverse cycle consistency (FICC) objective based on vector quantization, pre-training phase, fine-tuning phase.
 
437
  - Binghong Chen, Bo Dai, Qinjie Lin, Guo Ye, Han Liu, Le Song
438
  - Key: meta path planning algorithm, exploits a novel neural architecture which can learn promising search directions from problem structures.
439
  - ExpEnv: a 2d workspace with a 2 DoF (degrees of freedom) point robot, a 3 DoF stick robot and a 5 DoF snake robot
 
440
 
441
+ #### NeurIPS
442
  - [LightZero: A Unified Benchmark for Monte Carlo Tree Search in General Sequential Decision Scenarios](https://openreview.net/pdf?id=oIUXpBnyjv) 2023
443
  - Yazhe Niu, Yuan Pu, Zhenjie Yang, Xueyan Li, Tong Zhou, Jiyuan Ren, Shuai Hu, Hongsheng Li, Yu Liu
444
  - Key: the first unified benchmark for deploying MCTS/MuZero in general sequential decision scenarios.
 
459
  - Yangqing Fu, Ming Sun, Buqing Nie, Yue Gao
460
  - Key: probability tree state abstraction, transitivity and aggregation error bound
461
  - ExpEnv: Atari, CartPole, LunarLander, Gomoku
462
+ - [Spending Thinking Time Wisely: Accelerating MCTS with Virtual Expansions](https://openreview.net/pdf?id=B_LdLljS842) 2022
463
+ - Weirui Ye, Pieter Abbeel, Yang Gao
464
+ - Key: trade off computation versus performancem, virtual expansions, spend thinking time adaptively.
465
+ - ExpEnv: Atari, 9x9 Go
466
  - [Planning for Sample Efficient Imitation Learning](https://openreview.net/forum?id=BkN5UoAqF7) 2022
467
  - Zhao-Heng Yin, Weirui Ye, Qifeng Chen, Yang Gao
468
  - Key: Behavioral Cloning,Adversarial Imitation Learning (AIL),MCTS-based RL,
 
506
  - [Code](https://github.com/matthewfaw/mixnmatch)
507
 
508
  #### Other Conference or Journal
509
+ - [Learning to Stop: Dynamic Simulation Monte-Carlo Tree Search](https://arxiv.org/pdf/2012.07910.pdf) AAAI 2021.
510
  - [On Monte Carlo Tree Search and Reinforcement Learning](https://www.jair.org/index.php/jair/article/download/11099/26289/20632) Journal of Artificial Intelligence Research 2017.
511
  - [Sample-Efficient Neural Architecture Search by Learning Actions for Monte Carlo Tree Search](https://arxiv.org/pdf/1906.06832) IEEE Transactions on Pattern Analysis and Machine Intelligence 2022.
512
  </details>
rag_demo.py CHANGED
@@ -234,11 +234,11 @@ def execute_query_no_rag(model_name="gpt-4", temperature=0, query=""):
234
 
235
  if __name__ == "__main__":
236
  # 假设文档已存在于本地
237
- file_path = './documents/LightZero_README.zh.md'
238
  # model_name = "glm-4" # model_name=['abab6-chat', 'glm-4', 'gpt-3.5-turbo', 'gpt-4', 'gpt-4-turbo', 'azure_gpt-4', 'azure_gpt-35-turbo-16k', 'azure_gpt-35-turbo']
239
- model_name = 'azure_gpt-4'
 
240
  temperature = 0.01
241
- # embedding_model = 'HuggingFace' # embedding_model=['HuggingFace', 'TensorflowHub', 'OpenAI']
242
  embedding_model = 'OpenAI' # embedding_model=['HuggingFace', 'TensorflowHub', 'OpenAI']
243
 
244
  # 加载和分割文档
@@ -251,11 +251,11 @@ if __name__ == "__main__":
251
  rag_chain = setup_rag_chain(model_name=model_name, temperature=temperature)
252
 
253
  # 提出问题并获取答案
254
- query = ("GitHub - opendilab/LightZero: [NeurIPS 2023 Spotlight] LightZero: A Unified Benchmark for Monte Carl 请根据这个仓库回答下面的问题:(1)请简要介绍一下 LightZero2)请详细介绍 LightZero 的框架结构。 (3)请给出安装 LightZero,运行他们的示例代码的详细步骤 (4)- 请问 LightZero 具体支持什么任务(tasks/environments)? (5)请问 LightZero 具体支持什么算法?(6)请问 LightZero 具体支持什么算法,各自支持在哪些任务上运行? (7)请问 LightZero 里面实现的 MuZero 算法支持在 Atari 任务上运行吗?(8)请问 LightZero 里面实现的 AlphaZero 算法支持在 Atari 任务上运行吗?(9)LightZero 支持哪些算法? 各自的优缺点是什么? 我应该如何根据任务特点进行选择呢?(10)请结合 LightZero 中的代码介绍他们是如何实现 MCTS 的。(11)请问对这个仓库提出详细的改进建议")
255
  """
256
- (1)请简要介绍一下 LightZero
257
  (2)请详细介绍 LightZero 的框架结构。
258
- (3)请给出安装 LightZero,运行他们的示例代码的详细步骤
259
  (4)请问 LightZero 具体支持什么任务(tasks/environments)?
260
  (5)请问 LightZero 具体支持什么算法?
261
  (6)请问 LightZero 具体支持什么算法,各自支持在哪些任务上运行?
@@ -266,6 +266,7 @@ if __name__ == "__main__":
266
  (11)请问对这个仓库提出详细的改进建议。
267
  """
268
 
 
269
  # 使用 RAG 链获取参考的文档与答案
270
  retrieved_documents, result_with_rag = execute_query(retriever, rag_chain, query, model_name=model_name,
271
  temperature=temperature)
 
234
 
235
  if __name__ == "__main__":
236
  # 假设文档已存在于本地
237
+ file_path = './documents/LightZero_README_zh.md'
238
  # model_name = "glm-4" # model_name=['abab6-chat', 'glm-4', 'gpt-3.5-turbo', 'gpt-4', 'gpt-4-turbo', 'azure_gpt-4', 'azure_gpt-35-turbo-16k', 'azure_gpt-35-turbo']
239
+ # model_name = 'azure_gpt-4'
240
+ model_name = 'kimi'
241
  temperature = 0.01
 
242
  embedding_model = 'OpenAI' # embedding_model=['HuggingFace', 'TensorflowHub', 'OpenAI']
243
 
244
  # 加载和分割文档
 
251
  rag_chain = setup_rag_chain(model_name=model_name, temperature=temperature)
252
 
253
  # 提出问题并获取答案
254
+ query = ("请回答下面的问题:(1)请简要介绍一下 LightZero。(2)请详细介绍 LightZero 的框架结构。 (3)请给出安装 LightZero,运行他们的示例代码的详细步骤。(4)- 请问 LightZero 具体支持什么任务(tasks/environments)? (5)请问 LightZero 具体支持什么算法?(6)请问 LightZero 具体支持什么算法,各自支持在哪些任务上运行? (7)请问 LightZero 里面实现的 MuZero 算法支持在 Atari 任务上运行吗?(8)请问 LightZero 里面实现的 AlphaZero 算法支持在 Atari 任务上运行吗?(9)LightZero 支持哪些算法? 各自的优缺点是什么? 我应该如何根据任务特点进行选择呢?(10)请结合 LightZero 中的代码介绍他们是如何实现 MCTS 的。(11)请问对这个仓库提出详细的改进建议")
255
  """
256
+ (1)请简要介绍一下 LightZero
257
  (2)请详细介绍 LightZero 的框架结构。
258
+ (3)请给出安装 LightZero,运行他们的示例代码的详细步骤
259
  (4)请问 LightZero 具体支持什么任务(tasks/environments)?
260
  (5)请问 LightZero 具体支持什么算法?
261
  (6)请问 LightZero 具体支持什么算法,各自支持在哪些任务上运行?
 
266
  (11)请问对这个仓库提出详细的改进建议。
267
  """
268
 
269
+ # query = ("请检索最近关于Transformer+RL的最新论文,并给出详细介绍")
270
  # 使用 RAG 链获取参考的文档与答案
271
  retrieved_documents, result_with_rag = execute_query(retriever, rag_chain, query, model_name=model_name,
272
  temperature=temperature)