蒲源 commited on
Commit
8e57b83
·
1 Parent(s): ca8843c

feature(pu): add deepseek support ad set it as default llm

Browse files
Files changed (2) hide show
  1. app_mqa_database.py +2 -2
  2. rag_demo.py +28 -3
app_mqa_database.py CHANGED
@@ -169,10 +169,10 @@ def rag_answer(question, k=5, user_id='user'):
169
  answer = best_answer
170
  else:
171
  retriever = get_retriever(vectorstore, k)
172
- rag_chain = setup_rag_chain(model_name='kimi', temperature=temperature)
173
  history_str = "\n".join([f"{role}: {text}" for role, text in conversation_history[user_id]])
174
  history_question = [history_str, question]
175
- retrieved_documents, answer = execute_query(retriever, rag_chain, history_question, model_name='kimi',
176
  temperature=temperature)
177
 
178
  # 获取总的对话记录数
 
169
  answer = best_answer
170
  else:
171
  retriever = get_retriever(vectorstore, k)
172
+ rag_chain = setup_rag_chain(model_name='deepseek', temperature=temperature)
173
  history_str = "\n".join([f"{role}: {text}" for role, text in conversation_history[user_id]])
174
  history_question = [history_str, question]
175
+ retrieved_documents, answer = execute_query(retriever, rag_chain, history_question, model_name='deepseek',
176
  temperature=temperature)
177
 
178
  # 获取总的对话记录数
rag_demo.py CHANGED
@@ -18,7 +18,7 @@ from langchain.vectorstores import Weaviate
18
  from weaviate import Client
19
  from weaviate.embedded import EmbeddedOptions
20
  from zhipuai import ZhipuAI
21
- from openai import AzureOpenAI
22
 
23
  # 环境设置与文档下载
24
  load_dotenv() # 加载环境变量
@@ -27,6 +27,7 @@ MIMIMAX_API_KEY = os.getenv("MIMIMAX_API_KEY")
27
  MIMIMAX_GROUP_ID = os.getenv("MIMIMAX_GROUP_ID")
28
  ZHIPUAI_API_KEY = os.getenv("ZHIPUAI_API_KEY")
29
  KIMI_OPENAI_API_KEY = os.getenv("KIMI_OPENAI_API_KEY")
 
30
 
31
  AZURE_OPENAI_KEY = os.getenv("AZURE_OPENAI_KEY")
32
  AZURE_ENDPOINT = os.getenv("AZURE_ENDPOINT")
@@ -203,7 +204,6 @@ def execute_query_no_rag(model_name="gpt-4", temperature=0, query=""):
203
  return response.choices[0].message.content
204
  elif model_name == 'kimi':
205
  # 如果是'kimi'模型,使用专门的API调用方式
206
- from openai import OpenAI
207
  client = OpenAI(
208
  api_key=KIMI_OPENAI_API_KEY,
209
  base_url="https://api.moonshot.cn/v1",
@@ -226,6 +226,29 @@ def execute_query_no_rag(model_name="gpt-4", temperature=0, query=""):
226
  stream=False # 流式输出
227
  )
228
  return completion.choices[0].message.content
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
229
  else:
230
  # 如果模型不支持,抛出异常
231
  raise ValueError(f"Unsupported model: {model_name}")
@@ -236,7 +259,9 @@ if __name__ == "__main__":
236
  file_path = './documents/LightZero_README_zh.md'
237
  # model_name = "glm-4" # model_name=['abab6-chat', 'glm-4', 'gpt-3.5-turbo', 'gpt-4', 'gpt-4-turbo', 'azure_gpt-4', 'azure_gpt-35-turbo-16k', 'azure_gpt-35-turbo']
238
  # model_name = 'azure_gpt-4'
239
- model_name = 'kimi'
 
 
240
  temperature = 0.01
241
  embedding_model = 'OpenAI' # embedding_model=['HuggingFace', 'TensorflowHub', 'OpenAI']
242
 
 
18
  from weaviate import Client
19
  from weaviate.embedded import EmbeddedOptions
20
  from zhipuai import ZhipuAI
21
+ from openai import AzureOpenAI, OpenAI
22
 
23
  # 环境设置与文档下载
24
  load_dotenv() # 加载环境变量
 
27
  MIMIMAX_GROUP_ID = os.getenv("MIMIMAX_GROUP_ID")
28
  ZHIPUAI_API_KEY = os.getenv("ZHIPUAI_API_KEY")
29
  KIMI_OPENAI_API_KEY = os.getenv("KIMI_OPENAI_API_KEY")
30
+ DEEPSEEK_API_KEY = os.getenv("DEEPSEEK_OPENAI_API_KEY")
31
 
32
  AZURE_OPENAI_KEY = os.getenv("AZURE_OPENAI_KEY")
33
  AZURE_ENDPOINT = os.getenv("AZURE_ENDPOINT")
 
204
  return response.choices[0].message.content
205
  elif model_name == 'kimi':
206
  # 如果是'kimi'模型,使用专门的API调用方式
 
207
  client = OpenAI(
208
  api_key=KIMI_OPENAI_API_KEY,
209
  base_url="https://api.moonshot.cn/v1",
 
226
  stream=False # 流式输出
227
  )
228
  return completion.choices[0].message.content
229
+ elif model_name == 'deepseek':
230
+ # 如果是'deepseek'模型,使用专门的API调用方式
231
+ client = OpenAI(
232
+ api_key="sk-c4a8fe52693a4aaab64e648c42f40be6",
233
+ base_url="https://api.deepseek.com"
234
+ )
235
+
236
+ response = client.chat.completions.create(
237
+ model="deepseek-chat", # deepseek-coder
238
+ messages=[
239
+ {"role": "system", "content": "You are a helpful assistant"},
240
+ {"role": "user", "content": query},
241
+ ],
242
+ # max_tokens=4096,
243
+ # max_tokens=32000,
244
+ temperature=0.7,
245
+ stream=False,
246
+ frequency_penalty=0,
247
+ presence_penalty=0,
248
+ top_p=1,
249
+ logprobs=False,
250
+ )
251
+ return response.choices[0].message.content
252
  else:
253
  # 如果模型不支持,抛出异常
254
  raise ValueError(f"Unsupported model: {model_name}")
 
259
  file_path = './documents/LightZero_README_zh.md'
260
  # model_name = "glm-4" # model_name=['abab6-chat', 'glm-4', 'gpt-3.5-turbo', 'gpt-4', 'gpt-4-turbo', 'azure_gpt-4', 'azure_gpt-35-turbo-16k', 'azure_gpt-35-turbo']
261
  # model_name = 'azure_gpt-4'
262
+ # model_name = 'kimi'
263
+ model_name = 'deepseek'
264
+
265
  temperature = 0.01
266
  embedding_model = 'OpenAI' # embedding_model=['HuggingFace', 'TensorflowHub', 'OpenAI']
267