Spaces:
Sleeping
Sleeping
File size: 12,667 Bytes
3dfe8fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
import os
import numpy as np
import pytest
from easydict import EasyDict
from ding.league.player import Player, HistoricalPlayer, ActivePlayer, create_player
from ding.league.shared_payoff import create_payoff
from ding.league.starcraft_player import MainPlayer, MainExploiter, LeagueExploiter
from ding.league.tests.league_test_default_config import league_test_config
from ding.league.metric import LeagueMetricEnv
ONE_PHASE_STEP = 2000
env = LeagueMetricEnv()
@pytest.fixture(scope='function')
def setup_payoff():
cfg = EasyDict({'type': 'battle', 'decay': 0.99})
return create_payoff(cfg)
@pytest.fixture(scope='function')
def setup_league(setup_payoff):
players = []
for category in ['zerg', 'terran', 'protoss']:
# main_player
main_player_name = '{}_{}'.format('MainPlayer', category)
players.append(
create_player(
league_test_config.league, 'main_player', league_test_config.league.main_player, category, setup_payoff,
'ckpt_{}.pth'.format(main_player_name), main_player_name, 0, env.create_rating()
)
)
# main_exloiter
main_exploiter_name = '{}_{}'.format('MainExploiter', category)
players.append(
create_player(
league_test_config.league, 'main_exploiter', league_test_config.league.main_exploiter, category,
setup_payoff, 'ckpt_{}.pth'.format(main_exploiter_name), main_exploiter_name, 0, env.create_rating()
)
)
# league_exploiter
league_exploiter_name = '{}_{}'.format('LeagueExploiter', category)
for i in range(2):
players.append(
create_player(
league_test_config.league,
'league_exploiter',
league_test_config.league.league_exploiter,
category,
setup_payoff,
'ckpt_{}.pth'.format(league_exploiter_name),
league_exploiter_name,
0,
env.create_rating(),
)
)
# historical player: sl player is used as initial HistoricalPlayer
sl_hp_name = '{}_{}_sl'.format('MainPlayer', category)
players.append(
create_player(
league_test_config.league,
'historical_player',
EasyDict(),
category,
setup_payoff,
'ckpt_sl_{}'.format(sl_hp_name),
sl_hp_name,
0,
env.create_rating(),
parent_id=main_player_name,
)
)
for p in players:
setup_payoff.add_player(p)
return players
@pytest.mark.unittest
class TestMainPlayer:
def test_get_job(self, setup_league, setup_payoff):
N = 10
# no indicated p
# test get_job
for p in setup_league:
if isinstance(p, MainPlayer):
for i in range(N):
job_dict = p.get_job()
assert isinstance(job_dict, dict)
opponent = job_dict['opponent']
assert isinstance(opponent, Player)
assert opponent in setup_league
# payoff = setup_league[np.random.randint(0, len(setup_league))].payoff # random select reference
hp_list = []
for p in setup_league:
if isinstance(p, ActivePlayer):
p.total_agent_step = 2 * ONE_PHASE_STEP
hp = p.snapshot(env)
hp_list.append(hp)
setup_payoff.add_player(hp)
setup_league += hp_list # 12+3 + 12
# test get_job with branch prob
pfsp, sp, veri = False, False, False
for p in setup_league:
if isinstance(p, MainPlayer):
while True:
job_dict = p.get_job()
opponent = job_dict['opponent']
if isinstance(opponent, HistoricalPlayer) and 'MainPlayer' in opponent.parent_id:
veri = True
elif isinstance(opponent, HistoricalPlayer):
pfsp = True
elif isinstance(opponent, MainPlayer):
sp = True
else:
raise Exception("Main Player selects a wrong opponent {}", type(opponent))
if veri and pfsp and sp:
break
def test_snapshot(self, setup_league, setup_payoff):
N = 10
for p in setup_league:
for i in range(N):
if isinstance(p, ActivePlayer):
hp = p.snapshot(env)
assert isinstance(hp, HistoricalPlayer)
assert id(hp.payoff) == id(p.payoff)
assert hp.parent_id == p.player_id
def test_is_trained_enough(self, setup_league, setup_payoff):
for p in setup_league:
if isinstance(p, ActivePlayer):
assert not p.is_trained_enough()
assert p._last_enough_step == 0
# step_passed < ONE_PHASE_STEP
p.total_agent_step = ONE_PHASE_STEP * 0.99
assert not p.is_trained_enough()
assert p._last_enough_step == 0
# ONE_PHASE_STEP < step_passed < 2*ONE_PHASE_STEP, but low win rate
p.total_agent_step = ONE_PHASE_STEP + 1
assert not p.is_trained_enough()
assert p._last_enough_step == 0
# prepare HistoricalPlayer
# payoff = setup_league[np.random.randint(0, len(setup_league))].payoff # random select reference
hp_list = []
for p in setup_league:
if isinstance(p, MainPlayer):
hp = p.snapshot(env)
setup_payoff.add_player(hp)
hp_list.append(hp)
setup_league += hp_list
# update 10 wins against all historical players, should be trained enough
N = 10
assert isinstance(setup_league[0], MainPlayer)
for n in range(N):
for hp in [p for p in setup_league if isinstance(p, HistoricalPlayer)]:
match_info = {
'player_id': [setup_league[0].player_id, hp.player_id],
'result': [['wins']],
}
result = setup_payoff.update(match_info)
assert result
assert setup_league[0]._total_agent_step > ONE_PHASE_STEP
assert setup_league[0]._last_enough_step == 0
assert setup_league[0]._last_enough_step != setup_league[0]._total_agent_step
assert setup_league[0].is_trained_enough()
assert setup_league[0]._last_enough_step == setup_league[0]._total_agent_step
# update 10 draws against all historical players, should be not trained enough;
# then update ``total_agent_step`` to 2*ONE_PHASE_STEP, should be trained enough
assert isinstance(setup_league[5], MainPlayer)
for n in range(N):
for hp in hp_list:
match_info = {
'player_id': [setup_league[5].player_id, hp.player_id],
'result': [['draws']],
}
result = setup_payoff.update(match_info)
assert result
assert setup_league[5]._total_agent_step > ONE_PHASE_STEP
assert not setup_league[5].is_trained_enough()
setup_league[5].total_agent_step = 2 * ONE_PHASE_STEP
assert setup_league[5].is_trained_enough()
def test_mutate(self, setup_league, setup_payoff):
# main players do not mutate
assert isinstance(setup_league[0], MainPlayer)
for _ in range(10):
assert setup_league[0].mutate({}) is None
def test_sp_historical(self, setup_league, setup_payoff):
N = 10
main1 = setup_league[0] # 'zerg'
main2 = setup_league[5] # 'terran'
assert isinstance(main1, MainPlayer)
assert isinstance(main2, MainPlayer)
for n in range(N):
match_info = {
'player_id': [main1.player_id, main2.player_id],
'result': [['wins']],
}
result = setup_payoff.update(match_info)
assert result
for _ in range(200):
opponent = main2._sp_branch()
condition1 = opponent.category == 'terran' or opponent.category == 'protoss'
# condition2 means: zerg_main_opponent is too strong, so that must choose a historical weaker one
condition2 = opponent.category == 'zerg' and isinstance(
opponent, HistoricalPlayer
) and opponent.parent_id == main1.player_id
assert condition1 or condition2, (condition1, condition2)
@pytest.mark.unittest
class TestMainExploiter:
def test_get_job(self, setup_league, random_job_result, setup_payoff):
assert isinstance(setup_league[1], MainExploiter)
job_dict = setup_league[1].get_job()
opponent = job_dict['opponent']
assert isinstance(opponent, MainPlayer)
N = 10
# payoff = setup_league[np.random.randint(0, len(setup_league))].payoff # random select reference
for n in range(N):
for p in setup_league:
if isinstance(p, MainPlayer):
match_info = {
'player_id': [setup_league[1].player_id, p.player_id],
'result': [['losses']],
}
assert setup_payoff.update(match_info)
job_dict = setup_league[1].get_job()
opponent = job_dict['opponent']
# as long as main player, both active and historical are ok
assert (isinstance(opponent, HistoricalPlayer)
and 'MainPlayer' in opponent.parent_id) or isinstance(opponent, MainPlayer)
hp_list = []
for i in range(3):
for p in setup_league:
if isinstance(p, MainPlayer):
p.total_agent_step = (i + 1) * 2 * ONE_PHASE_STEP
hp = p.snapshot(env)
setup_payoff.add_player(hp)
hp_list.append(hp)
setup_league += hp_list
no_main_player_league = [p for p in setup_league if not isinstance(p, MainPlayer)]
for i in range(10000):
home = np.random.choice(no_main_player_league)
away = np.random.choice(no_main_player_league)
result = random_job_result()
match_info = {
'player_id': [home.player_id, away.player_id],
'result': [[result]],
}
assert setup_payoff.update(match_info)
for i in range(10):
job_dict = setup_league[1].get_job()
opponent = job_dict['opponent']
# as long as main player, both active and historical are ok
assert (isinstance(opponent, HistoricalPlayer)
and 'MainPlayer' in opponent.parent_id) or isinstance(opponent, MainPlayer)
def test_is_trained_enough(self, setup_league):
# only a few differences from `is_trained_enough` of MainPlayer
pass
def test_mutate(self, setup_league):
assert isinstance(setup_league[1], MainExploiter)
info = {'reset_checkpoint_path': 'pretrain_checkpoint.pth'}
for _ in range(10):
assert setup_league[1].mutate(info) == info['reset_checkpoint_path']
@pytest.mark.unittest
class TestLeagueExploiter:
def test_get_job(self, setup_league):
assert isinstance(setup_league[2], LeagueExploiter)
job_dict = setup_league[2].get_job()
opponent = job_dict['opponent']
assert isinstance(opponent, HistoricalPlayer)
assert isinstance(setup_league[3], LeagueExploiter)
job_dict = setup_league[3].get_job()
opponent = job_dict['opponent']
assert isinstance(opponent, HistoricalPlayer)
def test_is_trained_enough(self, setup_league):
# this function is the same as `is_trained_enough` of MainPlayer
pass
def test_mutate(self, setup_league):
assert isinstance(setup_league[2], LeagueExploiter)
info = {'reset_checkpoint_path': 'pretrain_checkpoint.pth'}
results = []
for _ in range(1000):
results.append(setup_league[2].mutate(info))
freq = len([t for t in results if t]) * 1.0 / len(results)
assert 0.2 <= freq <= 0.3 # approximate
if __name__ == '__main__':
pytest.main(["-sv", os.path.basename(__file__)])
|