File size: 42,301 Bytes
3dfe8fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
from typing import Optional, List, Dict, Any, Tuple, Union
from abc import ABC, abstractmethod
from collections import namedtuple
from easydict import EasyDict

import copy
import torch

from ding.model import create_model
from ding.utils import import_module, allreduce, broadcast, get_rank, allreduce_async, synchronize, deep_merge_dicts, \
    POLICY_REGISTRY


class Policy(ABC):
    """
    Overview:
        The basic class of Reinforcement Learning (RL) and Imitation Learning (IL) policy in DI-engine.
    Property:
        ``cfg``, ``learn_mode``, ``collect_mode``, ``eval_mode``
    """

    @classmethod
    def default_config(cls: type) -> EasyDict:
        """
        Overview:
            Get the default config of policy. This method is used to create the default config of policy.
        Returns:
            - cfg (:obj:`EasyDict`): The default config of corresponding policy. For the derived policy class, \
                it will recursively merge the default config of base class and its own default config.

        .. tip::
            This method will deepcopy the ``config`` attribute of the class and return the result. So users don't need \
            to worry about the modification of the returned config.
        """
        if cls == Policy:
            raise RuntimeError("Basic class Policy doesn't have completed default_config")

        base_cls = cls.__base__
        if base_cls == Policy:
            base_policy_cfg = EasyDict(copy.deepcopy(Policy.config))
        else:
            base_policy_cfg = copy.deepcopy(base_cls.default_config())
        cfg = EasyDict(copy.deepcopy(cls.config))
        cfg = deep_merge_dicts(base_policy_cfg, cfg)
        cfg.cfg_type = cls.__name__ + 'Dict'
        return cfg

    learn_function = namedtuple(
        'learn_function', [
            'forward',
            'reset',
            'info',
            'monitor_vars',
            'get_attribute',
            'set_attribute',
            'state_dict',
            'load_state_dict',
        ]
    )
    collect_function = namedtuple(
        'collect_function', [
            'forward',
            'process_transition',
            'get_train_sample',
            'reset',
            'get_attribute',
            'set_attribute',
            'state_dict',
            'load_state_dict',
        ]
    )
    eval_function = namedtuple(
        'eval_function', [
            'forward',
            'reset',
            'get_attribute',
            'set_attribute',
            'state_dict',
            'load_state_dict',
        ]
    )
    total_field = set(['learn', 'collect', 'eval'])
    config = dict(
        # (bool) Whether the learning policy is the same as the collecting data policy (on-policy).
        on_policy=False,
        # (bool) Whether to use cuda in policy.
        cuda=False,
        # (bool) Whether to use data parallel multi-gpu mode in policy.
        multi_gpu=False,
        # (bool) Whether to synchronize update the model parameters after allreduce the gradients of model parameters.
        bp_update_sync=True,
        # (bool) Whether to enable infinite trajectory length in data collecting.
        traj_len_inf=False,
        # neural network model config
        model=dict(),
    )

    def __init__(
            self,
            cfg: EasyDict,
            model: Optional[torch.nn.Module] = None,
            enable_field: Optional[List[str]] = None
    ) -> None:
        """
        Overview:
            Initialize policy instance according to input configures and model. This method will initialize differnent \
            fields in policy, including ``learn``, ``collect``, ``eval``. The ``learn`` field is used to train the \
            policy, the ``collect`` field is used to collect data for training, and the ``eval`` field is used to \
            evaluate the policy. The ``enable_field`` is used to specify which field to initialize, if it is None, \
            then all fields will be initialized.
        Arguments:
            - cfg (:obj:`EasyDict`): The final merged config used to initialize policy. For the default config, \
                see the ``config`` attribute and its comments of policy class.
            - model (:obj:`torch.nn.Module`): The neural network model used to initialize policy. If it \
                is None, then the model will be created according to ``default_model`` method and ``cfg.model`` field. \
                Otherwise, the model will be set to the ``model`` instance created by outside caller.
            - enable_field (:obj:`Optional[List[str]]`): The field list to initialize. If it is None, then all fields \
                will be initialized. Otherwise, only the fields in ``enable_field`` will be initialized, which is \
                beneficial to save resources.

        .. note::
            For the derived policy class, it should implement the ``_init_learn``, ``_init_collect``, ``_init_eval`` \
            method to initialize the corresponding field.
        """
        self._cfg = cfg
        self._on_policy = self._cfg.on_policy
        if enable_field is None:
            self._enable_field = self.total_field
        else:
            self._enable_field = enable_field
        assert set(self._enable_field).issubset(self.total_field), self._enable_field

        if len(set(self._enable_field).intersection(set(['learn', 'collect', 'eval']))) > 0:
            model = self._create_model(cfg, model)
            self._cuda = cfg.cuda and torch.cuda.is_available()
            # now only support multi-gpu for only enable learn mode
            if len(set(self._enable_field).intersection(set(['learn']))) > 0:
                multi_gpu = self._cfg.multi_gpu
                self._rank = get_rank() if multi_gpu else 0
                if self._cuda:
                    # model.cuda() is an in-place operation.
                    model.cuda()
                if multi_gpu:
                    bp_update_sync = self._cfg.bp_update_sync
                    self._bp_update_sync = bp_update_sync
                    self._init_multi_gpu_setting(model, bp_update_sync)
            else:
                self._rank = 0
                if self._cuda:
                    # model.cuda() is an in-place operation.
                    model.cuda()
            self._model = model
            self._device = 'cuda:{}'.format(self._rank % torch.cuda.device_count()) if self._cuda else 'cpu'
        else:
            self._cuda = False
            self._rank = 0
            self._device = 'cpu'

        # call the initialization method of different modes, such as ``_init_learn``, ``_init_collect``, ``_init_eval``
        for field in self._enable_field:
            getattr(self, '_init_' + field)()

    def _init_multi_gpu_setting(self, model: torch.nn.Module, bp_update_sync: bool) -> None:
        """
        Overview:
            Initialize multi-gpu data parallel training setting, including broadcast model parameters at the beginning \
            of the training, and prepare the hook function to allreduce the gradients of model parameters.
        Arguments:
            - model (:obj:`torch.nn.Module`): The neural network model to be trained.
            - bp_update_sync (:obj:`bool`): Whether to synchronize update the model parameters after allreduce the \
                gradients of model parameters. Async update can be parallel in different network layers like pipeline \
                so that it can save time.
        """
        for name, param in model.state_dict().items():
            assert isinstance(param.data, torch.Tensor), type(param.data)
            broadcast(param.data, 0)
        # here we manually set the gradient to zero tensor at the beginning of the training, which is necessary for
        # the case that different GPUs have different computation graph.
        for name, param in model.named_parameters():
            setattr(param, 'grad', torch.zeros_like(param))
        if not bp_update_sync:

            def make_hook(name, p):

                def hook(*ignore):
                    allreduce_async(name, p.grad.data)

                return hook

            for i, (name, p) in enumerate(model.named_parameters()):
                if p.requires_grad:
                    p_tmp = p.expand_as(p)
                    grad_acc = p_tmp.grad_fn.next_functions[0][0]
                    grad_acc.register_hook(make_hook(name, p))

    def _create_model(self, cfg: EasyDict, model: Optional[torch.nn.Module] = None) -> torch.nn.Module:
        """
        Overview:
            Create or validate the neural network model according to input configures and model. If the input model is \
            None, then the model will be created according to ``default_model`` method and ``cfg.model`` field. \
            Otherwise, the model will be verified as an instance of ``torch.nn.Module`` and set to the ``model`` \
            instance created by outside caller.
        Arguments:
            - cfg (:obj:`EasyDict`): The final merged config used to initialize policy.
            - model (:obj:`torch.nn.Module`): The neural network model used to initialize policy. User can refer to \
                the default model defined in corresponding policy to customize its own model.
        Returns:
            - model (:obj:`torch.nn.Module`): The created neural network model. The different modes of policy will \
                add distinct wrappers and plugins to the model, which is used to train, collect and evaluate.
        Raises:
            - RuntimeError: If the input model is not None and is not an instance of ``torch.nn.Module``.
        """
        if model is None:
            model_cfg = cfg.model
            if 'type' not in model_cfg:
                m_type, import_names = self.default_model()
                model_cfg.type = m_type
                model_cfg.import_names = import_names
            return create_model(model_cfg)
        else:
            if isinstance(model, torch.nn.Module):
                return model
            else:
                raise RuntimeError("invalid model: {}".format(type(model)))

    @property
    def cfg(self) -> EasyDict:
        return self._cfg

    @abstractmethod
    def _init_learn(self) -> None:
        """
        Overview:
            Initialize the learn mode of policy, including related attributes and modules. This method will be \
            called in ``__init__`` method if ``learn`` field is in ``enable_field``. Almost different policies have \
            its own learn mode, so this method must be overrided in subclass.

        .. note::
            For the member variables that need to be saved and loaded, please refer to the ``_state_dict_learn`` \
            and ``_load_state_dict_learn`` methods.

        .. note::
            For the member variables that need to be monitored, please refer to the ``_monitor_vars_learn`` method.

        .. note::
            If you want to set some spacial member variables in ``_init_learn`` method, you'd better name them \
            with prefix ``_learn_`` to avoid conflict with other modes, such as ``self._learn_attr1``.
        """
        raise NotImplementedError

    @abstractmethod
    def _init_collect(self) -> None:
        """
        Overview:
            Initialize the collect mode of policy, including related attributes and modules. This method will be \
            called in ``__init__`` method if ``collect`` field is in ``enable_field``. Almost different policies have \
            its own collect mode, so this method must be overrided in subclass.

        .. note::
            For the member variables that need to be saved and loaded, please refer to the ``_state_dict_collect`` \
            and ``_load_state_dict_collect`` methods.

        .. note::
            If you want to set some spacial member variables in ``_init_collect`` method, you'd better name them \
            with prefix ``_collect_`` to avoid conflict with other modes, such as ``self._collect_attr1``.
        """
        raise NotImplementedError

    @abstractmethod
    def _init_eval(self) -> None:
        """
        Overview:
            Initialize the eval mode of policy, including related attributes and modules. This method will be \
            called in ``__init__`` method if ``eval`` field is in ``enable_field``. Almost different policies have \
            its own eval mode, so this method must be overrided in subclass.

        .. note::
            For the member variables that need to be saved and loaded, please refer to the ``_state_dict_eval`` \
            and ``_load_state_dict_eval`` methods.

        .. note::
            If you want to set some spacial member variables in ``_init_eval`` method, you'd better name them \
            with prefix ``_eval_`` to avoid conflict with other modes, such as ``self._eval_attr1``.
        """
        raise NotImplementedError

    @property
    def learn_mode(self) -> 'Policy.learn_function':  # noqa
        """
        Overview:
            Return the interfaces of learn mode of policy, which is used to train the model. Here we use namedtuple \
            to define immutable interfaces and restrict the usage of policy in different mode. Moreover, derived \
            subclass can override the interfaces to customize its own learn mode.
        Returns:
            - interfaces (:obj:`Policy.learn_function`): The interfaces of learn mode of policy, it is a namedtuple \
                whose values of distinct fields are different internal methods.
        Examples:
            >>> policy = Policy(cfg, model)
            >>> policy_learn = policy.learn_mode
            >>> train_output = policy_learn.forward(data)
            >>> state_dict = policy_learn.state_dict()
        """
        return Policy.learn_function(
            self._forward_learn,
            self._reset_learn,
            self.__repr__,
            self._monitor_vars_learn,
            self._get_attribute,
            self._set_attribute,
            self._state_dict_learn,
            self._load_state_dict_learn,
        )

    @property
    def collect_mode(self) -> 'Policy.collect_function':  # noqa
        """
        Overview:
            Return the interfaces of collect mode of policy, which is used to train the model. Here we use namedtuple \
            to define immutable interfaces and restrict the usage of policy in different mode. Moreover, derived \
            subclass can override the interfaces to customize its own collect mode.
        Returns:
            - interfaces (:obj:`Policy.collect_function`): The interfaces of collect mode of policy, it is a \
                namedtuple whose values of distinct fields are different internal methods.
        Examples:
            >>> policy = Policy(cfg, model)
            >>> policy_collect = policy.collect_mode
            >>> obs = env_manager.ready_obs
            >>> inference_output = policy_collect.forward(obs)
            >>> next_obs, rew, done, info = env_manager.step(inference_output.action)
        """
        return Policy.collect_function(
            self._forward_collect,
            self._process_transition,
            self._get_train_sample,
            self._reset_collect,
            self._get_attribute,
            self._set_attribute,
            self._state_dict_collect,
            self._load_state_dict_collect,
        )

    @property
    def eval_mode(self) -> 'Policy.eval_function':  # noqa
        """
        Overview:
            Return the interfaces of eval mode of policy, which is used to train the model. Here we use namedtuple \
            to define immutable interfaces and restrict the usage of policy in different mode. Moreover, derived \
            subclass can override the interfaces to customize its own eval mode.
        Returns:
            - interfaces (:obj:`Policy.eval_function`): The interfaces of eval mode of policy, it is a namedtuple \
                whose values of distinct fields are different internal methods.
        Examples:
            >>> policy = Policy(cfg, model)
            >>> policy_eval = policy.eval_mode
            >>> obs = env_manager.ready_obs
            >>> inference_output = policy_eval.forward(obs)
            >>> next_obs, rew, done, info = env_manager.step(inference_output.action)
        """
        return Policy.eval_function(
            self._forward_eval,
            self._reset_eval,
            self._get_attribute,
            self._set_attribute,
            self._state_dict_eval,
            self._load_state_dict_eval,
        )

    def _set_attribute(self, name: str, value: Any) -> None:
        """
        Overview:
            In order to control the access of the policy attributes, we expose different modes to outside rather than \
            directly use the policy instance. And we also provide a method to set the attribute of the policy in \
            different modes. And the new attribute will named as ``_{name}``.
        Arguments:
            - name (:obj:`str`): The name of the attribute.
            - value (:obj:`Any`): The value of the attribute.
        """
        setattr(self, '_' + name, value)

    def _get_attribute(self, name: str) -> Any:
        """
        Overview:
            In order to control the access of the policy attributes, we expose different modes to outside rather than \
            directly use the policy instance. And we also provide a method to get the attribute of the policy in \
            different modes.
        Arguments:
            - name (:obj:`str`): The name of the attribute.
        Returns:
            - value (:obj:`Any`): The value of the attribute.

        .. note::
            DI-engine's policy will first try to access `_get_{name}` method, and then try to access `_{name}` \
            attribute. If both of them are not found, it will raise a ``NotImplementedError``.
        """
        if hasattr(self, '_get_' + name):
            return getattr(self, '_get_' + name)()
        elif hasattr(self, '_' + name):
            return getattr(self, '_' + name)
        else:
            raise NotImplementedError

    def __repr__(self) -> str:
        """
        Overview:
            Get the string representation of the policy.
        Returns:
            - repr (:obj:`str`): The string representation of the policy.
        """
        return "DI-engine DRL Policy\n{}".format(repr(self._model))

    def sync_gradients(self, model: torch.nn.Module) -> None:
        """
        Overview:
            Synchronize (allreduce) gradients of model parameters in data-parallel multi-gpu training.
        Arguments:
            - model (:obj:`torch.nn.Module`): The model to synchronize gradients.

        .. note::
            This method is only used in multi-gpu training, and it shoule be called after ``backward`` method and \
            before ``step`` method. The user can also use ``bp_update_sync`` config to control whether to synchronize \
            gradients allreduce and optimizer updates.
        """

        if self._bp_update_sync:
            for name, param in model.named_parameters():
                if param.requires_grad:
                    allreduce(param.grad.data)
        else:
            synchronize()

    # don't need to implement default_model method by force
    def default_model(self) -> Tuple[str, List[str]]:
        """
        Overview:
            Return this algorithm default neural network model setting for demonstration. ``__init__`` method will \
            automatically call this method to get the default model setting and create model.
        Returns:
            - model_info (:obj:`Tuple[str, List[str]]`): The registered model name and model's import_names.

        .. note::
            The user can define and use customized network model but must obey the same inferface definition indicated \
            by import_names path. For example about DQN, its registered name is ``dqn`` and the import_names is \
            ``ding.model.template.q_learning.DQN``
        """
        raise NotImplementedError

    # *************************************** learn function ************************************

    @abstractmethod
    def _forward_learn(self, data: List[Dict[str, Any]]) -> Dict[str, Any]:
        """
        Overview:
            Policy forward function of learn mode (training policy and updating parameters). Forward means \
            that the policy inputs some training batch data from the replay buffer and then returns the output \
            result, including various training information such as loss value, policy entropy, q value, priority, \
            and so on. This method is left to be implemented by the subclass, and more arguments can be added in \
            ``data`` item if necessary.
        Arguments:
            - data (:obj:`List[Dict[int, Any]]`): The input data used for policy forward, including a batch of \
                training samples. For each element in list, the key of the dict is the name of data items and the \
                value is the corresponding data. Usually, in the ``_forward_learn`` method, data should be stacked in \
                the batch dimension by some utility functions such as ``default_preprocess_learn``.
        Returns:
            - output (:obj:`Dict[int, Any]`): The training information of policy forward, including some metrics for \
                monitoring training such as loss, priority, q value, policy entropy, and some data for next step \
                training such as priority. Note the output data item should be Python native scalar rather than \
                PyTorch tensor, which is convenient for the outside to use.
        """
        raise NotImplementedError

    # don't need to implement _reset_learn method by force
    def _reset_learn(self, data_id: Optional[List[int]] = None) -> None:
        """
        Overview:
            Reset some stateful variables for learn mode when necessary, such as the hidden state of RNN or the \
            memory bank of some special algortihms. If ``data_id`` is None, it means to reset all the stateful \
            varaibles. Otherwise, it will reset the stateful variables according to the ``data_id``. For example, \
            different trajectories in ``data_id`` will have different hidden state in RNN.
        Arguments:
            - data_id (:obj:`Optional[List[int]]`): The id of the data, which is used to reset the stateful variables \
                specified by ``data_id``.

        .. note::
            This method is not mandatory to be implemented. The sub-class can overwrite this method if necessary.
        """
        pass

    def _monitor_vars_learn(self) -> List[str]:
        """
        Overview:
            Return the necessary keys for logging the return dict of ``self._forward_learn``. The logger module, such \
            as text logger, tensorboard logger, will use these keys to save the corresponding data.
        Returns:
            - necessary_keys (:obj:`List[str]`): The list of the necessary keys to be logged.

        .. tip::
            The default implementation is ``['cur_lr', 'total_loss']``. Other derived classes can overwrite this \
            method to add their own keys if necessary.
        """
        return ['cur_lr', 'total_loss']

    def _state_dict_learn(self) -> Dict[str, Any]:
        """
        Overview:
            Return the state_dict of learn mode, usually including model and optimizer.
        Returns:
            - state_dict (:obj:`Dict[str, Any]`): The dict of current policy learn state, for saving and restoring.
        """
        return {
            'model': self._learn_model.state_dict(),
            'optimizer': self._optimizer.state_dict(),
        }

    def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None:
        """
        Overview:
            Load the state_dict variable into policy learn mode.
        Arguments:
            - state_dict (:obj:`Dict[str, Any]`): The dict of policy learn state saved before.

        .. tip::
            If you want to only load some parts of model, you can simply set the ``strict`` argument in \
            load_state_dict to ``False``, or refer to ``ding.torch_utils.checkpoint_helper`` for more \
            complicated operation.
        """
        self._learn_model.load_state_dict(state_dict['model'])
        self._optimizer.load_state_dict(state_dict['optimizer'])

    def _get_batch_size(self) -> Union[int, Dict[str, int]]:
        # some specifial algorithms use different batch size for different optimization parts.
        if 'batch_size' in self._cfg:
            return self._cfg.batch_size
        else:  # for compatibility
            return self._cfg.learn.batch_size

    # *************************************** collect function ************************************

    @abstractmethod
    def _forward_collect(self, data: Dict[int, Any], **kwargs) -> Dict[int, Any]:
        """
        Overview:
            Policy forward function of collect mode (collecting training data by interacting with envs). Forward means \
            that the policy gets some necessary data (mainly observation) from the envs and then returns the output \
            data, such as the action to interact with the envs, or the action logits to calculate the loss in learn \
            mode. This method is left to be implemented by the subclass, and more arguments can be added in ``kwargs`` \
            part if necessary.
        Arguments:
            - data (:obj:`Dict[int, Any]`): The input data used for policy forward, including at least the obs. The \
                key of the dict is environment id and the value is the corresponding data of the env.
        Returns:
            - output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action and \
                other necessary data for learn mode defined in ``self._process_transition`` method. The key of the \
                dict is the same as the input data, i.e. environment id.
        """
        raise NotImplementedError

    @abstractmethod
    def _process_transition(
            self, obs: Union[torch.Tensor, Dict[str, torch.Tensor]], policy_output: Dict[str, torch.Tensor],
            timestep: namedtuple
    ) -> Dict[str, torch.Tensor]:
        """
        Overview:
            Process and pack one timestep transition data into a dict, such as <s, a, r, s', done>. Some policies \
            need to do some special process and pack its own necessary attributes (e.g. hidden state and logit), \
            so this method is left to be implemented by the subclass.
        Arguments:
            - obs (:obj:`Union[torch.Tensor, Dict[str, torch.Tensor]]`): The observation of the current timestep.
            - policy_output (:obj:`Dict[str, torch.Tensor]`): The output of the policy network with the observation \
                as input. Usually, it contains the action and the logit of the action.
            - timestep (:obj:`namedtuple`): The execution result namedtuple returned by the environment step method, \
                except all the elements have been transformed into tensor data. Usually, it contains the next obs, \
                reward, done, info, etc.
        Returns:
            - transition (:obj:`Dict[str, torch.Tensor]`): The processed transition data of the current timestep.
        """
        raise NotImplementedError

    @abstractmethod
    def _get_train_sample(self, transitions: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
        """
        Overview:
            For a given trajectory (transitions, a list of transition) data, process it into a list of sample that \
            can be used for training directly. A train sample can be a processed transition (DQN with nstep TD) \
            or some multi-timestep transitions (DRQN). This method is usually used in collectors to execute necessary \
            RL data preprocessing before training, which can help learner amortize revelant time consumption. \
            In addition, you can also implement this method as an identity function and do the data processing \
            in ``self._forward_learn`` method.
        Arguments:
            - transitions (:obj:`List[Dict[str, Any]`): The trajectory data (a list of transition), each element is \
                the same format as the return value of ``self._process_transition`` method.
        Returns:
            - samples (:obj:`List[Dict[str, Any]]`): The processed train samples, each element is the similar format \
                as input transitions, but may contain more data for training, such as nstep reward, advantage, etc.

        .. note::
            We will vectorize ``process_transition`` and ``get_train_sample`` method in the following release version. \
            And the user can customize the this data processing procecure by overriding this two methods and collector \
            itself
        """
        raise NotImplementedError

    # don't need to implement _reset_collect method by force
    def _reset_collect(self, data_id: Optional[List[int]] = None) -> None:
        """
        Overview:
            Reset some stateful variables for collect mode when necessary, such as the hidden state of RNN or the \
            memory bank of some special algortihms. If ``data_id`` is None, it means to reset all the stateful \
            varaibles. Otherwise, it will reset the stateful variables according to the ``data_id``. For example, \
            different environments/episodes in collecting in ``data_id`` will have different hidden state in RNN.
        Arguments:
            - data_id (:obj:`Optional[List[int]]`): The id of the data, which is used to reset the stateful variables \
                specified by ``data_id``.

        .. note::
            This method is not mandatory to be implemented. The sub-class can overwrite this method if necessary.
        """
        pass

    def _state_dict_collect(self) -> Dict[str, Any]:
        """
        Overview:
            Return the state_dict of collect mode, only including model in usual, which is necessary for distributed \
            training scenarios to auto-recover collectors.
        Returns:
            - state_dict (:obj:`Dict[str, Any]`): The dict of current policy collect state, for saving and restoring.

        .. tip::
            Not all the scenarios need to auto-recover collectors, sometimes, we can directly shutdown the crashed \
            collector and renew a new one.
        """
        return {'model': self._collect_model.state_dict()}

    def _load_state_dict_collect(self, state_dict: Dict[str, Any]) -> None:
        """
        Overview:
            Load the state_dict variable into policy collect mode, such as load pretrained state_dict, auto-recover \
            checkpoint, or model replica from learner in distributed training scenarios.
        Arguments:
            - state_dict (:obj:`Dict[str, Any]`): The dict of policy collect state saved before.

        .. tip::
            If you want to only load some parts of model, you can simply set the ``strict`` argument in \
            load_state_dict to ``False``, or refer to ``ding.torch_utils.checkpoint_helper`` for more \
            complicated operation.
        """
        self._collect_model.load_state_dict(state_dict['model'], strict=True)

    def _get_n_sample(self) -> Union[int, None]:
        if 'n_sample' in self._cfg:
            return self._cfg.n_sample
        else:  # for compatibility
            return self._cfg.collect.get('n_sample', None)  # for some adpative collecting data case

    def _get_n_episode(self) -> Union[int, None]:
        if 'n_episode' in self._cfg:
            return self._cfg.n_episode
        else:  # for compatibility
            return self._cfg.collect.get('n_episode', None)  # for some adpative collecting data case

    # *************************************** eval function ************************************

    @abstractmethod
    def _forward_eval(self, data: Dict[int, Any]) -> Dict[int, Any]:
        """
        Overview:
            Policy forward function of eval mode (evaluation policy performance, such as interacting with envs or \
            computing metrics on validation dataset). Forward means that the policy gets some necessary data (mainly \
            observation) from the envs and then returns the output data, such as the action to interact with the envs. \
            This method is left to be implemented by the subclass.
        Arguments:
            - data (:obj:`Dict[int, Any]`): The input data used for policy forward, including at least the obs. The \
                key of the dict is environment id and the value is the corresponding data of the env.
        Returns:
            - output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action. The \
                key of the dict is the same as the input data, i.e. environment id.
        """
        raise NotImplementedError

    # don't need to implement _reset_eval method by force
    def _reset_eval(self, data_id: Optional[List[int]] = None) -> None:
        """
        Overview:
            Reset some stateful variables for eval mode when necessary, such as the hidden state of RNN or the \
            memory bank of some special algortihms. If ``data_id`` is None, it means to reset all the stateful \
            varaibles. Otherwise, it will reset the stateful variables according to the ``data_id``. For example, \
            different environments/episodes in evaluation in ``data_id`` will have different hidden state in RNN.
        Arguments:
            - data_id (:obj:`Optional[List[int]]`): The id of the data, which is used to reset the stateful variables \
                specified by ``data_id``.

        .. note::
            This method is not mandatory to be implemented. The sub-class can overwrite this method if necessary.
        """
        pass

    def _state_dict_eval(self) -> Dict[str, Any]:
        """
        Overview:
            Return the state_dict of eval mode, only including model in usual, which is necessary for distributed \
            training scenarios to auto-recover evaluators.
        Returns:
            - state_dict (:obj:`Dict[str, Any]`): The dict of current policy eval state, for saving and restoring.

        .. tip::
            Not all the scenarios need to auto-recover evaluators, sometimes, we can directly shutdown the crashed \
            evaluator and renew a new one.
        """
        return {'model': self._eval_model.state_dict()}

    def _load_state_dict_eval(self, state_dict: Dict[str, Any]) -> None:
        """
        Overview:
            Load the state_dict variable into policy eval mode, such as load auto-recover \
            checkpoint, or model replica from learner in distributed training scenarios.
        Arguments:
            - state_dict (:obj:`Dict[str, Any]`): The dict of policy eval state saved before.

        .. tip::
            If you want to only load some parts of model, you can simply set the ``strict`` argument in \
            load_state_dict to ``False``, or refer to ``ding.torch_utils.checkpoint_helper`` for more \
            complicated operation.
        """
        self._eval_model.load_state_dict(state_dict['model'], strict=True)


class CommandModePolicy(Policy):
    """
    Overview:
        Policy with command mode, which can be used in old version of DI-engine pipeline: ``serial_pipeline``. \
        ``CommandModePolicy`` uses ``_get_setting_learn``, ``_get_setting_collect``, ``_get_setting_eval`` methods \
        to exchange information between different workers.

    Interface:
        ``_init_command``, ``_get_setting_learn``, ``_get_setting_collect``, ``_get_setting_eval``
    Property:
        ``command_mode``
    """
    command_function = namedtuple('command_function', ['get_setting_learn', 'get_setting_collect', 'get_setting_eval'])
    total_field = set(['learn', 'collect', 'eval', 'command'])

    @property
    def command_mode(self) -> 'Policy.command_function':  # noqa
        """
        Overview:
            Return the interfaces of command mode of policy, which is used to train the model. Here we use namedtuple \
            to define immutable interfaces and restrict the usage of policy in different mode. Moreover, derived \
            subclass can override the interfaces to customize its own command mode.
        Returns:
            - interfaces (:obj:`Policy.command_function`): The interfaces of command mode, it is a namedtuple \
                whose values of distinct fields are different internal methods.
        Examples:
            >>> policy = CommandModePolicy(cfg, model)
            >>> policy_command = policy.command_mode
            >>> settings = policy_command.get_setting_learn(command_info)
        """
        return CommandModePolicy.command_function(
            self._get_setting_learn, self._get_setting_collect, self._get_setting_eval
        )

    @abstractmethod
    def _init_command(self) -> None:
        """
        Overview:
            Initialize the command mode of policy, including related attributes and modules. This method will be \
            called in ``__init__`` method if ``command`` field is in ``enable_field``. Almost different policies have \
            its own command mode, so this method must be overrided in subclass.

        .. note::
            If you want to set some spacial member variables in ``_init_command`` method, you'd better name them \
            with prefix ``_command_`` to avoid conflict with other modes, such as ``self._command_attr1``.
        """
        raise NotImplementedError

    # *************************************** command function ************************************
    @abstractmethod
    def _get_setting_learn(self, command_info: Dict[str, Any]) -> Dict[str, Any]:
        """
        Overview:
            Accoding to ``command_info``, i.e., global training information (e.g. training iteration, collected env \
            step, evaluation results, etc.), return the setting of learn mode, which contains dynamically changed \
            hyperparameters for learn mode, such as ``batch_size``, ``learning_rate``, etc.
        Arguments:
            - command_info (:obj:`Dict[str, Any]`): The global training information, which is defined in ``commander``.
        Returns:
            - setting (:obj:`Dict[str, Any]`): The latest setting of learn mode, which is usually used as extra \
                arguments of the ``policy._forward_learn`` method.
        """
        raise NotImplementedError

    @abstractmethod
    def _get_setting_collect(self, command_info: Dict[str, Any]) -> Dict[str, Any]:
        """
        Overview:
            Accoding to ``command_info``, i.e., global training information (e.g. training iteration, collected env \
            step, evaluation results, etc.), return the setting of collect mode, which contains dynamically changed \
            hyperparameters for collect mode, such as ``eps``, ``temperature``, etc.
        Arguments:
            - command_info (:obj:`Dict[str, Any]`): The global training information, which is defined in ``commander``.
        Returns:
            - setting (:obj:`Dict[str, Any]`): The latest setting of collect mode, which is usually used as extra \
                arguments of the ``policy._forward_collect`` method.
        """
        raise NotImplementedError

    @abstractmethod
    def _get_setting_eval(self, command_info: Dict[str, Any]) -> Dict[str, Any]:
        """
        Overview:
            Accoding to ``command_info``, i.e., global training information (e.g. training iteration, collected env \
            step, evaluation results, etc.), return the setting of eval mode, which contains dynamically changed \
            hyperparameters for eval mode, such as ``temperature``, etc.
        Arguments:
            - command_info (:obj:`Dict[str, Any]`): The global training information, which is defined in ``commander``.
        Returns:
            - setting (:obj:`Dict[str, Any]`): The latest setting of eval mode, which is usually used as extra \
                arguments of the ``policy._forward_eval`` method.
        """
        raise NotImplementedError


def create_policy(cfg: EasyDict, **kwargs) -> Policy:
    """
    Overview:
        Create a policy instance according to ``cfg`` and other kwargs.
    Arguments:
        - cfg (:obj:`EasyDict`): Final merged policy config.
    ArgumentsKeys:
        - type (:obj:`str`): Policy type set in ``POLICY_REGISTRY.register`` method , such as ``dqn`` .
        - import_names (:obj:`List[str]`): A list of module names (paths) to import before creating policy, such \
            as ``ding.policy.dqn`` .
    Returns:
        - policy (:obj:`Policy`): The created policy instance.

    .. tip::
        ``kwargs`` contains other arguments that need to be passed to the policy constructor. You can refer to \
        the ``__init__`` method of the corresponding policy class for details.

    .. note::
        For more details about how to merge config, please refer to the system document of DI-engine \
        (`en link <../03_system/config.html>`_).
    """
    import_module(cfg.get('import_names', []))
    return POLICY_REGISTRY.build(cfg.type, cfg=cfg, **kwargs)


def get_policy_cls(cfg: EasyDict) -> type:
    """
    Overview:
        Get policy class according to ``cfg``, which is used to access related class variables/methods.
    Arguments:
        - cfg (:obj:`EasyDict`): Final merged policy config.
    ArgumentsKeys:
        - type (:obj:`str`): Policy type set in ``POLICY_REGISTRY.register`` method , such as ``dqn`` .
        - import_names (:obj:`List[str]`): A list of module names (paths) to import before creating policy, such \
            as ``ding.policy.dqn`` .
    Returns:
        - policy (:obj:`type`): The policy class.
    """
    import_module(cfg.get('import_names', []))
    return POLICY_REGISTRY.get(cfg.type)