File size: 39,812 Bytes
3dfe8fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
from typing import List, Dict, Any, Tuple, Union
from collections import namedtuple
import torch
import copy
import numpy as np
from torch.distributions import Independent, Normal

from ding.torch_utils import Adam, to_device, to_dtype, unsqueeze, ContrastiveLoss
from ding.rl_utils import happo_data, happo_error, happo_policy_error, happo_policy_data, \
    v_nstep_td_data, v_nstep_td_error, get_train_sample, gae, gae_data, happo_error_continuous, \
    get_gae
from ding.model import model_wrap
from ding.utils import POLICY_REGISTRY, split_data_generator, RunningMeanStd
from ding.utils.data import default_collate, default_decollate
from .base_policy import Policy
from .common_utils import default_preprocess_learn


@POLICY_REGISTRY.register('happo')
class HAPPOPolicy(Policy):
    """
    Overview:
        Policy class of on policy version HAPPO algorithm. Paper link: https://arxiv.org/abs/2109.11251.
    """
    config = dict(
        # (str) RL policy register name (refer to function "POLICY_REGISTRY").
        type='happo',
        # (bool) Whether to use cuda for network.
        cuda=False,
        # (bool) Whether the RL algorithm is on-policy or off-policy. (Note: in practice PPO can be off-policy used)
        on_policy=True,
        # (bool) Whether to use priority(priority sample, IS weight, update priority)
        priority=False,
        # (bool) Whether to use Importance Sampling Weight to correct biased update due to priority.
        # If True, priority must be True.
        priority_IS_weight=False,
        # (bool) Whether to recompurete advantages in each iteration of on-policy PPO
        recompute_adv=True,
        # (str) Which kind of action space used in PPOPolicy, ['discrete', 'continuous', 'hybrid']
        action_space='discrete',
        # (bool) Whether to use nstep return to calculate value target, otherwise, use return = adv + value
        nstep_return=False,
        # (bool) Whether to enable multi-agent training, i.e.: MAPPO
        multi_agent=False,
        # (bool) Whether to need policy data in process transition
        transition_with_policy_data=True,
        learn=dict(
            epoch_per_collect=10,
            batch_size=64,
            learning_rate=3e-4,
            # ==============================================================
            # The following configs is algorithm-specific
            # ==============================================================
            # (float) The loss weight of value network, policy network weight is set to 1
            value_weight=0.5,
            # (float) The loss weight of entropy regularization, policy network weight is set to 1
            entropy_weight=0.0,
            # (float) PPO clip ratio, defaults to 0.2
            clip_ratio=0.2,
            # (bool) Whether to use advantage norm in a whole training batch
            adv_norm=True,
            value_norm=True,
            ppo_param_init=True,
            grad_clip_type='clip_norm',
            grad_clip_value=0.5,
            ignore_done=False,
        ),
        collect=dict(
            # (int) Only one of [n_sample, n_episode] shoule be set
            # n_sample=64,
            # (int) Cut trajectories into pieces with length "unroll_len".
            unroll_len=1,
            # ==============================================================
            # The following configs is algorithm-specific
            # ==============================================================
            # (float) Reward's future discount factor, aka. gamma.
            discount_factor=0.99,
            # (float) GAE lambda factor for the balance of bias and variance(1-step td and mc)
            gae_lambda=0.95,
        ),
        eval=dict(),
    )

    def _init_learn(self) -> None:
        """
        Overview:
            Initialize the learn mode of policy, including related attributes and modules. For HAPPO, it mainly \
            contains optimizer, algorithm-specific arguments such as loss weight, clip_ratio and recompute_adv. This \
            method also executes some special network initializations and prepares running mean/std monitor for value.
            This method will be called in ``__init__`` method if ``learn`` field is in ``enable_field``.

        .. note::
            For the member variables that need to be saved and loaded, please refer to the ``_state_dict_learn`` \
            and ``_load_state_dict_learn`` methods.

        .. note::
            For the member variables that need to be monitored, please refer to the ``_monitor_vars_learn`` method.

        .. note::
            If you want to set some spacial member variables in ``_init_learn`` method, you'd better name them \
            with prefix ``_learn_`` to avoid conflict with other modes, such as ``self._learn_attr1``.
        """
        self._priority = self._cfg.priority
        self._priority_IS_weight = self._cfg.priority_IS_weight
        assert not self._priority and not self._priority_IS_weight, "Priority is not implemented in PPO"

        assert self._cfg.action_space in ["continuous", "discrete"]
        self._action_space = self._cfg.action_space
        if self._cfg.learn.ppo_param_init:
            for n, m in self._model.named_modules():
                if isinstance(m, torch.nn.Linear):
                    torch.nn.init.orthogonal_(m.weight)
                    torch.nn.init.zeros_(m.bias)
            if self._action_space in ['continuous']:
                # init log sigma
                for agent_id in range(self._cfg.agent_num):
                    # if hasattr(self._model.agent_models[agent_id].actor_head, 'log_sigma_param'):
                    #     torch.nn.init.constant_(self._model.agent_models[agent_id].actor_head.log_sigma_param, 1)
                    # The above initialization step has been changed to reparameterizationHead.
                    for m in list(self._model.agent_models[agent_id].critic.modules()) + \
                    list(self._model.agent_models[agent_id].actor.modules()):
                        if isinstance(m, torch.nn.Linear):
                            # orthogonal initialization
                            torch.nn.init.orthogonal_(m.weight, gain=np.sqrt(2))
                            torch.nn.init.zeros_(m.bias)
                    # do last policy layer scaling, this will make initial actions have (close to)
                    # 0 mean and std, and will help boost performances,
                    # see https://arxiv.org/abs/2006.05990, Fig.24 for details
                    for m in self._model.agent_models[agent_id].actor.modules():
                        if isinstance(m, torch.nn.Linear):
                            torch.nn.init.zeros_(m.bias)
                            m.weight.data.copy_(0.01 * m.weight.data)

        # Add the actor/critic parameters of each HAVACAgent in HAVAC to the parameter list of actor/critic_optimizer
        actor_params = []
        critic_params = []
        for agent_idx in range(self._model.agent_num):
            actor_params.append({'params': self._model.agent_models[agent_idx].actor.parameters()})
            critic_params.append({'params': self._model.agent_models[agent_idx].critic.parameters()})

        self._actor_optimizer = Adam(
            actor_params,
            lr=self._cfg.learn.learning_rate,
            grad_clip_type=self._cfg.learn.grad_clip_type,
            clip_value=self._cfg.learn.grad_clip_value,
            # eps = 1e-5,
        )

        self._critic_optimizer = Adam(
            critic_params,
            lr=self._cfg.learn.critic_learning_rate,
            grad_clip_type=self._cfg.learn.grad_clip_type,
            clip_value=self._cfg.learn.grad_clip_value,
            # eps = 1e-5,
        )

        self._learn_model = model_wrap(self._model, wrapper_name='base')
        # self._learn_model = model_wrap(
        #     self._model,
        #     wrapper_name='hidden_state',
        #     state_num=self._cfg.learn.batch_size,
        #     init_fn=lambda: [None for _ in range(self._cfg.model.agent_num)]
        # )

        # Algorithm config
        self._value_weight = self._cfg.learn.value_weight
        self._entropy_weight = self._cfg.learn.entropy_weight
        self._clip_ratio = self._cfg.learn.clip_ratio
        self._adv_norm = self._cfg.learn.adv_norm
        self._value_norm = self._cfg.learn.value_norm
        if self._value_norm:
            self._running_mean_std = RunningMeanStd(epsilon=1e-4, device=self._device)
        self._gamma = self._cfg.collect.discount_factor
        self._gae_lambda = self._cfg.collect.gae_lambda
        self._recompute_adv = self._cfg.recompute_adv
        # Main model
        self._learn_model.reset()

    def prepocess_data_agent(self, data: Dict[str, Any]):
        """
        Overview:
            Preprocess data for agent dim. This function is used in learn mode. \
            It will be called recursively to process nested dict data. \
            It will transpose the data with shape (B, agent_num, ...) to (agent_num, B, ...). \
        Arguments:
            - data (:obj:`dict`): Dict type data, where each element is the data of an agent of dict type.
        Returns:
            - ret (:obj:`dict`): Dict type data, where each element is the data of an agent of dict type.
        """
        ret = {}
        for key, value in data.items():
            if isinstance(value, dict):
                ret[key] = self.prepocess_data_agent(value)
            elif isinstance(value, torch.Tensor) and len(value.shape) > 1:
                ret[key] = value.transpose(0, 1)
            else:
                ret[key] = value
        return ret

    def _forward_learn(self, data: Dict[str, Any]) -> Dict[str, Any]:
        """
        Overview:
            Forward and backward function of learn mode.
        Arguments:
            - data (:obj:`dict`): List type data, where each element is the data of an agent of dict type.
        Returns:
            - info_dict (:obj:`Dict[str, Any]`):
              Including current lr, total_loss, policy_loss, value_loss, entropy_loss, \
                        adv_abs_max, approx_kl, clipfrac
        Overview:
            Policy forward function of learn mode (training policy and updating parameters). Forward means \
            that the policy inputs some training batch data from the replay buffer and then returns the output \
            result, including various training information such as loss, clipfrac, approx_kl.
        Arguments:
            - data (:obj:`List[Dict[int, Any]]`): The input data used for policy forward, including the latest \
                collected training samples for on-policy algorithms like HAPPO. For each element in list, the key of \
                dict is the name of data items and the value is the corresponding data. Usually, the value is \
                torch.Tensor or np.ndarray or there dict/list combinations. In the ``_forward_learn`` method, data \
                often need to first be stacked in the batch dimension by some utility functions such as \
                ``default_preprocess_learn``. \
                For HAPPO, each element in list is a dict containing at least the following keys: ``obs``, \
                ``action``, ``reward``, ``logit``, ``value``, ``done``. Sometimes, it also contains other keys \
                such as ``weight``.
        Returns:
            - return_infos (:obj:`List[Dict[str, Any]]`): The information list that indicated training result, each \
                training iteration contains append a information dict into the final list. The list will be precessed \
                and recorded in text log and tensorboard. The value of the dict must be python scalar or a list of \
                scalars. For the detailed definition of the dict, refer to the code of ``_monitor_vars_learn`` method.

        .. tip::
            The training procedure of HAPPO is three for loops. The outermost loop trains each agent separately. \
            The middle loop trains all the collected training samples with ``epoch_per_collect`` epochs. The inner \
            loop splits all the data into different mini-batch with the length of ``batch_size``.

        .. note::
            The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
            For the data type that not supported, the main reason is that the corresponding model does not support it. \
            You can implement you own model rather than use the default model. For more information, please raise an \
            issue in GitHub repo and we will continue to follow up.

        .. note::
            For more detailed examples, please refer to our unittest for HAPPOPolicy: ``ding.policy.tests.test_happo``.
        """
        data = default_preprocess_learn(data, ignore_done=self._cfg.learn.ignore_done, use_nstep=False)
        all_data_len = data['obs']['agent_state'].shape[0]
        # fator is the ratio of the old and new strategies of the first m-1 agents, initialized to 1.
        # Each transition has its own factor. ref: http://arxiv.org/abs/2109.11251
        factor = torch.ones(all_data_len, 1)  # (B, 1)
        if self._cuda:
            data = to_device(data, self._device)
            factor = to_device(factor, self._device)
        # process agent dim
        data = self.prepocess_data_agent(data)
        # ====================
        # PPO forward
        # ====================
        return_infos = []
        self._learn_model.train()

        for agent_id in range(self._cfg.agent_num):
            agent_data = {}
            for key, value in data.items():
                if value is not None:
                    if type(value) is dict:
                        agent_data[key] = {k: v[agent_id] for k, v in value.items()}  # not feasible for rnn
                    elif len(value.shape) > 1:
                        agent_data[key] = data[key][agent_id]
                    else:
                        agent_data[key] = data[key]
                else:
                    agent_data[key] = data[key]

            # update factor
            agent_data['factor'] = factor
            # calculate old_logits of all data in buffer for later factor
            inputs = {
                'obs': agent_data['obs'],
                # 'actor_prev_state': agent_data['actor_prev_state'],
                # 'critic_prev_state': agent_data['critic_prev_state'],
            }
            old_logits = self._learn_model.forward(agent_id, inputs, mode='compute_actor')['logit']

            for epoch in range(self._cfg.learn.epoch_per_collect):
                if self._recompute_adv:  # calculate new value using the new updated value network
                    with torch.no_grad():
                        inputs['obs'] = agent_data['obs']
                        # value = self._learn_model.forward(agent_id, agent_data['obs'], mode='compute_critic')['value']
                        value = self._learn_model.forward(agent_id, inputs, mode='compute_critic')['value']
                        inputs['obs'] = agent_data['next_obs']
                        next_value = self._learn_model.forward(agent_id, inputs, mode='compute_critic')['value']
                        if self._value_norm:
                            value *= self._running_mean_std.std
                            next_value *= self._running_mean_std.std

                        traj_flag = agent_data.get('traj_flag', None)  # traj_flag indicates termination of trajectory
                        compute_adv_data = gae_data(
                            value, next_value, agent_data['reward'], agent_data['done'], traj_flag
                        )
                        agent_data['adv'] = gae(compute_adv_data, self._gamma, self._gae_lambda)

                        unnormalized_returns = value + agent_data['adv']

                        if self._value_norm:
                            agent_data['value'] = value / self._running_mean_std.std
                            agent_data['return'] = unnormalized_returns / self._running_mean_std.std
                            self._running_mean_std.update(unnormalized_returns.cpu().numpy())
                        else:
                            agent_data['value'] = value
                            agent_data['return'] = unnormalized_returns

                else:  # don't recompute adv
                    if self._value_norm:
                        unnormalized_return = agent_data['adv'] + agent_data['value'] * self._running_mean_std.std
                        agent_data['return'] = unnormalized_return / self._running_mean_std.std
                        self._running_mean_std.update(unnormalized_return.cpu().numpy())
                    else:
                        agent_data['return'] = agent_data['adv'] + agent_data['value']

                for batch in split_data_generator(agent_data, self._cfg.learn.batch_size, shuffle=True):
                    inputs = {
                        'obs': batch['obs'],
                        # 'actor_prev_state': batch['actor_prev_state'],
                        # 'critic_prev_state': batch['critic_prev_state'],
                    }
                    output = self._learn_model.forward(agent_id, inputs, mode='compute_actor_critic')
                    adv = batch['adv']
                    if self._adv_norm:
                        # Normalize advantage in a train_batch
                        adv = (adv - adv.mean()) / (adv.std() + 1e-8)

                    # Calculate happo error
                    if self._action_space == 'continuous':
                        happo_batch = happo_data(
                            output['logit'], batch['logit'], batch['action'], output['value'], batch['value'], adv,
                            batch['return'], batch['weight'], batch['factor']
                        )
                        happo_loss, happo_info = happo_error_continuous(happo_batch, self._clip_ratio)
                    elif self._action_space == 'discrete':
                        happo_batch = happo_data(
                            output['logit'], batch['logit'], batch['action'], output['value'], batch['value'], adv,
                            batch['return'], batch['weight'], batch['factor']
                        )
                        happo_loss, happo_info = happo_error(happo_batch, self._clip_ratio)
                    wv, we = self._value_weight, self._entropy_weight
                    total_loss = happo_loss.policy_loss + wv * happo_loss.value_loss - we * happo_loss.entropy_loss

                    # actor update
                    # critic update
                    self._actor_optimizer.zero_grad()
                    self._critic_optimizer.zero_grad()
                    total_loss.backward()
                    self._actor_optimizer.step()
                    self._critic_optimizer.step()

                    return_info = {
                        'agent{}_cur_lr'.format(agent_id): self._actor_optimizer.defaults['lr'],
                        'agent{}_total_loss'.format(agent_id): total_loss.item(),
                        'agent{}_policy_loss'.format(agent_id): happo_loss.policy_loss.item(),
                        'agent{}_value_loss'.format(agent_id): happo_loss.value_loss.item(),
                        'agent{}_entropy_loss'.format(agent_id): happo_loss.entropy_loss.item(),
                        'agent{}_adv_max'.format(agent_id): adv.max().item(),
                        'agent{}_adv_mean'.format(agent_id): adv.mean().item(),
                        'agent{}_value_mean'.format(agent_id): output['value'].mean().item(),
                        'agent{}_value_max'.format(agent_id): output['value'].max().item(),
                        'agent{}_approx_kl'.format(agent_id): happo_info.approx_kl,
                        'agent{}_clipfrac'.format(agent_id): happo_info.clipfrac,
                    }
                    if self._action_space == 'continuous':
                        return_info.update(
                            {
                                'agent{}_act'.format(agent_id): batch['action'].float().mean().item(),
                                'agent{}_mu_mean'.format(agent_id): output['logit']['mu'].mean().item(),
                                'agent{}_sigma_mean'.format(agent_id): output['logit']['sigma'].mean().item(),
                            }
                        )
                    return_infos.append(return_info)
            # calculate the factor
            inputs = {
                'obs': agent_data['obs'],
                # 'actor_prev_state': agent_data['actor_prev_state'],
            }
            new_logits = self._learn_model.forward(agent_id, inputs, mode='compute_actor')['logit']
            if self._cfg.action_space == 'discrete':
                dist_new = torch.distributions.categorical.Categorical(logits=new_logits)
                dist_old = torch.distributions.categorical.Categorical(logits=old_logits)
            elif self._cfg.action_space == 'continuous':
                dist_new = Normal(new_logits['mu'], new_logits['sigma'])
                dist_old = Normal(old_logits['mu'], old_logits['sigma'])
            logp_new = dist_new.log_prob(agent_data['action'])
            logp_old = dist_old.log_prob(agent_data['action'])
            if len(logp_new.shape) > 1:
                # for logp with shape(B, action_shape), we need to calculate the product of all action dimensions.
                factor = factor * torch.prod(
                    torch.exp(logp_new - logp_old), dim=-1
                ).reshape(all_data_len, 1).detach()  # attention the shape
            else:
                # for logp with shape(B, ), directly calculate factor
                factor = factor * torch.exp(logp_new - logp_old).reshape(all_data_len, 1).detach()
        return return_infos

    def _state_dict_learn(self) -> Dict[str, Any]:
        """
        Overview:
            Return the state_dict of learn mode optimizer and model.
        Returns:
            - state_dict (:obj:`Dict[str, Any]`): The dict of current policy learn mode. It contains the \
                state_dict of current policy network and optimizer.
        """
        return {
            'model': self._learn_model.state_dict(),
            'actor_optimizer': self._actor_optimizer.state_dict(),
            'critic_optimizer': self._critic_optimizer.state_dict(),
        }

    def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None:
        """
        Overview:
            Load the state_dict of learn mode optimizer and model.
        Arguments:
            - state_dict (:obj:`Dict[str, Any]`): The dict of policy learn mode. It contains the state_dict \
                of current policy network and optimizer.
        """
        self._learn_model.load_state_dict(state_dict['model'])
        self._actor_optimizer.load_state_dict(state_dict['actor_optimizer'])
        self._critic_optimizer.load_state_dict(state_dict['critic_optimizer'])

    def _init_collect(self) -> None:
        """
        Overview:
            Initialize the collect mode of policy, including related attributes and modules. For HAPPO, it contains \
            the collect_model to balance the exploration and exploitation (e.g. the multinomial sample mechanism in \
            discrete action space), and other algorithm-specific arguments such as unroll_len and gae_lambda.
            This method will be called in ``__init__`` method if ``collect`` field is in ``enable_field``.

        .. note::
            If you want to set some spacial member variables in ``_init_collect`` method, you'd better name them \
            with prefix ``_collect_`` to avoid conflict with other modes, such as ``self._collect_attr1``.

        .. tip::
            Some variables need to initialize independently in different modes, such as gamma and gae_lambda in PPO. \
            This design is for the convenience of parallel execution of different policy modes.
        """
        self._unroll_len = self._cfg.collect.unroll_len
        assert self._cfg.action_space in ["continuous", "discrete"]
        self._action_space = self._cfg.action_space
        if self._action_space == 'continuous':
            self._collect_model = model_wrap(self._model, wrapper_name='reparam_sample')
        elif self._action_space == 'discrete':
            self._collect_model = model_wrap(self._model, wrapper_name='multinomial_sample')
        self._collect_model.reset()
        self._gamma = self._cfg.collect.discount_factor
        self._gae_lambda = self._cfg.collect.gae_lambda
        self._recompute_adv = self._cfg.recompute_adv

    def _forward_collect(self, data: Dict[int, Any]) -> dict:
        """
        Overview:
            Policy forward function of collect mode (collecting training data by interacting with envs). Forward means \
            that the policy gets some necessary data (mainly observation) from the envs and then returns the output \
            data, such as the action to interact with the envs.
        Arguments:
            - data (:obj:`Dict[int, Any]`): The input data used for policy forward, including at least the obs. The \
                key of the dict is environment id and the value is the corresponding data of the env.
        Returns:
            - output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action and \
                other necessary data (action logit and value) for learn mode defined in ``self._process_transition`` \
                method. The key of the dict is the same as the input data, i.e. environment id.

        .. tip::
            If you want to add more tricks on this policy, like temperature factor in multinomial sample, you can pass \
            related data as extra keyword arguments of this method.

        .. note::
            The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
            For the data type that not supported, the main reason is that the corresponding model does not support it. \
            You can implement you own model rather than use the default model. For more information, please raise an \
            issue in GitHub repo and we will continue to follow up.

        .. note::
            For more detailed examples, please refer to our unittest for HAPPOPolicy: ``ding.policy.tests.test_happo``.
        """
        data_id = list(data.keys())
        data = default_collate(list(data.values()))
        if self._cuda:
            data = to_device(data, self._device)
        data = {k: v.transpose(0, 1) for k, v in data.items()}  # not feasible for rnn
        self._collect_model.eval()
        with torch.no_grad():
            outputs = []
            for agent_id in range(self._cfg.agent_num):
                # output = self._collect_model.forward(agent_id, data, mode='compute_actor_critic')
                single_agent_obs = {k: v[agent_id] for k, v in data.items()}
                input = {
                    'obs': single_agent_obs,
                }
                output = self._collect_model.forward(agent_id, input, mode='compute_actor_critic')
                outputs.append(output)
            # transfer data from (M, B, N)->(B, M, N)
            result = {}
            for key in outputs[0].keys():
                if isinstance(outputs[0][key], dict):
                    subkeys = outputs[0][key].keys()
                    stacked_subvalues = {}
                    for subkey in subkeys:
                        stacked_subvalues[subkey] = \
                            torch.stack([output[key][subkey] for output in outputs], dim=0).transpose(0, 1)
                    result[key] = stacked_subvalues
                else:
                    # If Value is tensor, stack it directly
                    if isinstance(outputs[0][key], torch.Tensor):
                        result[key] = torch.stack([output[key] for output in outputs], dim=0).transpose(0, 1)
                    else:
                        # If it is not tensor, assume that it is a non-stackable data type \
                        # (such as int, float, etc.), and directly retain the original value
                        result[key] = [output[key] for output in outputs]
        output = result
        if self._cuda:
            output = to_device(output, 'cpu')
        output = default_decollate(output)
        return {i: d for i, d in zip(data_id, output)}

    def _process_transition(self, obs: Any, model_output: dict, timestep: namedtuple) -> dict:
        """
        Overview:
            Process and pack one timestep transition data into a dict, which can be directly used for training and \
            saved in replay buffer. For HAPPO, it contains obs, next_obs, action, reward, done, logit, value.
        Arguments:
            - obs (:obj:`torch.Tensor`): The env observation of current timestep.
            - policy_output (:obj:`Dict[str, torch.Tensor]`): The output of the policy network with the observation \
                as input. For PPO, it contains the state value, action and the logit of the action.
            - timestep (:obj:`namedtuple`): The execution result namedtuple returned by the environment step method, \
                except all the elements have been transformed into tensor data. Usually, it contains the next obs, \
                reward, done, info, etc.
        Returns:
            - transition (:obj:`Dict[str, torch.Tensor]`): The processed transition data of the current timestep.

        .. note::
            ``next_obs`` is used to calculate nstep return when necessary, so we place in into transition by default. \
            You can delete this field to save memory occupancy if you do not need nstep return.
        """
        transition = {
            'obs': obs,
            'next_obs': timestep.obs,
            'action': model_output['action'],
            'logit': model_output['logit'],
            'value': model_output['value'],
            'reward': timestep.reward,
            'done': timestep.done,
        }
        return transition

    def _get_train_sample(self, data: list) -> Union[None, List[Any]]:
        """
        Overview:
            For a given trajectory (transitions, a list of transition) data, process it into a list of sample that \
            can be used for training directly. In HAPPO, a train sample is a processed transition with new computed \
            ``traj_flag`` and ``adv`` field. This method is usually used in collectors to execute necessary \
            RL data preprocessing before training, which can help learner amortize revelant time consumption. \
            In addition, you can also implement this method as an identity function and do the data processing \
            in ``self._forward_learn`` method.
        Arguments:
            - transitions (:obj:`List[Dict[str, Any]`): The trajectory data (a list of transition), each element is \
                the same format as the return value of ``self._process_transition`` method.
        Returns:
            - samples (:obj:`List[Dict[str, Any]]`): The processed train samples, each element is the similar format \
                as input transitions, but may contain more data for training, such as GAE advantage.
        """
        data = to_device(data, self._device)
        for transition in data:
            transition['traj_flag'] = copy.deepcopy(transition['done'])
        data[-1]['traj_flag'] = True

        if self._cfg.learn.ignore_done:
            data[-1]['done'] = False

        if data[-1]['done']:
            last_value = torch.zeros_like(data[-1]['value'])
        else:
            with torch.no_grad():
                last_values = []
                for agent_id in range(self._cfg.agent_num):
                    inputs = {'obs': {k: unsqueeze(v[agent_id], 0) for k, v in data[-1]['next_obs'].items()}}
                    last_value = self._collect_model.forward(agent_id, inputs, mode='compute_actor_critic')['value']
                    last_values.append(last_value)
                last_value = torch.cat(last_values)
            if len(last_value.shape) == 2:  # multi_agent case:
                last_value = last_value.squeeze(0)
        if self._value_norm:
            last_value *= self._running_mean_std.std
            for i in range(len(data)):
                data[i]['value'] *= self._running_mean_std.std
        data = get_gae(
            data,
            to_device(last_value, self._device),
            gamma=self._gamma,
            gae_lambda=self._gae_lambda,
            cuda=False,
        )
        if self._value_norm:
            for i in range(len(data)):
                data[i]['value'] /= self._running_mean_std.std

        # remove next_obs for save memory when not recompute adv
        if not self._recompute_adv:
            for i in range(len(data)):
                data[i].pop('next_obs')
        return get_train_sample(data, self._unroll_len)

    def _init_eval(self) -> None:
        """
        Overview:
            Initialize the eval mode of policy, including related attributes and modules. For PPO, it contains the \
            eval model to select optimial action (e.g. greedily select action with argmax mechanism in discrete action).
            This method will be called in ``__init__`` method if ``eval`` field is in ``enable_field``.

        .. note::
            If you want to set some spacial member variables in ``_init_eval`` method, you'd better name them \
            with prefix ``_eval_`` to avoid conflict with other modes, such as ``self._eval_attr1``.
        """
        assert self._cfg.action_space in ["continuous", "discrete"]
        self._action_space = self._cfg.action_space
        if self._action_space == 'continuous':
            self._eval_model = model_wrap(self._model, wrapper_name='deterministic_sample')
        elif self._action_space == 'discrete':
            self._eval_model = model_wrap(self._model, wrapper_name='argmax_sample')
        self._eval_model.reset()

    def _forward_eval(self, data: dict) -> dict:
        """
        Overview:
            Policy forward function of eval mode (evaluation policy performance by interacting with envs). Forward \
            means that the policy gets some necessary data (mainly observation) from the envs and then returns the \
            action to interact with the envs. ``_forward_eval`` in HAPPO often uses deterministic sample method to \
            get actions while ``_forward_collect`` usually uses stochastic sample method for balance exploration and \
            exploitation.
        Arguments:
            - data (:obj:`Dict[int, Any]`): The input data used for policy forward, including at least the obs. The \
                key of the dict is environment id and the value is the corresponding data of the env.
        Returns:
            - output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action. The \
                key of the dict is the same as the input data, i.e. environment id.

        .. note::
            The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
            For the data type that not supported, the main reason is that the corresponding model does not support it. \
            You can implement you own model rather than use the default model. For more information, please raise an \
            issue in GitHub repo and we will continue to follow up.

        .. note::
            For more detailed examples, please refer to our unittest for HAPPOPolicy: ``ding.policy.tests.test_happo``.
        """
        data_id = list(data.keys())
        data = default_collate(list(data.values()))
        if self._cuda:
            data = to_device(data, self._device)
        # transfer data from (B, M, N)->(M, B, N)
        data = {k: v.transpose(0, 1) for k, v in data.items()}  # not feasible for rnn
        self._eval_model.eval()
        with torch.no_grad():
            outputs = []
            for agent_id in range(self._cfg.agent_num):
                single_agent_obs = {k: v[agent_id] for k, v in data.items()}
                input = {
                    'obs': single_agent_obs,
                }
                output = self._eval_model.forward(agent_id, input, mode='compute_actor')
                outputs.append(output)
        output = self.revert_agent_data(outputs)
        if self._cuda:
            output = to_device(output, 'cpu')
        output = default_decollate(output)
        return {i: d for i, d in zip(data_id, output)}

    def default_model(self) -> Tuple[str, List[str]]:
        """
        Overview:
            Return this algorithm default neural network model setting for demonstration. ``__init__`` method will \
            automatically call this method to get the default model setting and create model.
        Returns:
            - model_info (:obj:`Tuple[str, List[str]]`): The registered model name and model's import_names.

        .. note::
            The user can define and use customized network model but must obey the same inferface definition indicated \
            by import_names path. For example about HAPPO, its registered name is ``happo`` and the import_names is \
            ``ding.model.template.havac``.
        """
        return 'havac', ['ding.model.template.havac']

    def _monitor_vars_learn(self) -> List[str]:
        """
        Overview:
            Return the necessary keys for logging the return dict of ``self._forward_learn``. The logger module, such \
            as text logger, tensorboard logger, will use these keys to save the corresponding data.
        Returns:
            - necessary_keys (:obj:`List[str]`): The list of the necessary keys to be logged.
        """
        variables = super()._monitor_vars_learn() + [
            'policy_loss',
            'value_loss',
            'entropy_loss',
            'adv_max',
            'adv_mean',
            'approx_kl',
            'clipfrac',
            'value_max',
            'value_mean',
        ]
        if self._action_space == 'continuous':
            variables += ['mu_mean', 'sigma_mean', 'sigma_grad', 'act']
        prefixes = [f'agent{i}_' for i in range(self._cfg.agent_num)]
        variables = [prefix + var for prefix in prefixes for var in variables]
        return variables

    def revert_agent_data(self, data: list):
        """
        Overview:
            Revert the data of each agent to the original data format.
        Arguments:
            - data (:obj:`list`): List type data, where each element is the data of an agent of dict type.
        Returns:
            - ret (:obj:`dict`): Dict type data, where each element is the data of an agent of dict type.
        """
        ret = {}
        # Traverse all keys of the first output
        for key in data[0].keys():
            if isinstance(data[0][key], torch.Tensor):
                # If the value corresponding to the current key is tensor, stack N tensors
                stacked_tensor = torch.stack([output[key] for output in data], dim=0)
                ret[key] = stacked_tensor.transpose(0, 1)
            elif isinstance(data[0][key], dict):
                # If the value corresponding to the current key is a dictionary, recursively \
                # call the function to process the contents inside the dictionary.
                ret[key] = self.revert_agent_data([output[key] for output in data])
        return ret