File size: 27,950 Bytes
3dfe8fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
from collections import namedtuple
from typing import List, Dict, Any, Tuple

import torch
import treetensor.torch as ttorch

from ding.model import model_wrap
from ding.rl_utils import vtrace_data, vtrace_error_discrete_action, vtrace_error_continuous_action, get_train_sample
from ding.torch_utils import Adam, RMSprop, to_device
from ding.utils import POLICY_REGISTRY
from ding.utils.data import default_collate, default_decollate, ttorch_collate
from ding.policy.base_policy import Policy


@POLICY_REGISTRY.register('impala')
class IMPALAPolicy(Policy):
    """
    Overview:
        Policy class of IMPALA algorithm. Paper link: https://arxiv.org/abs/1802.01561.

    Config:
        == ==================== ======== ============== ======================================== =======================
        ID Symbol               Type     Default Value  Description                              Other(Shape)
        == ==================== ======== ============== ======================================== =======================
        1  ``type``             str      impala         | RL policy register name, refer to      | this arg is optional,
                                                        | registry ``POLICY_REGISTRY``           | a placeholder
        2  ``cuda``             bool     False          | Whether to use cuda for network        | this arg can be diff-
                                                                                                 | erent from modes
        3  ``on_policy``        bool     False          | Whether the RL algorithm is on-policy
                                                        | or off-policy
        4. ``priority``         bool     False          | Whether use priority(PER)              | priority sample,
                                                                                                 | update priority

        5  | ``priority_``      bool     False          | Whether use Importance Sampling Weight | If True, priority
           | ``IS_weight``                              |                                        | must be True
        6  ``unroll_len``       int      32             | trajectory length to calculate v-trace
                                                        | target
        7  | ``learn.update``   int      4              | How many updates(iterations) to train  | this args can be vary
           | ``per_collect``                            | after collector's one collection. Only | from envs. Bigger val
                                                        | valid in serial training               | means more off-policy
        == ==================== ======== ============== ======================================== =======================
    """
    config = dict(
        # (str) RL policy register name (refer to function "POLICY_REGISTRY").
        type='impala',
        # (bool) Whether to use cuda in policy.
        cuda=False,
        # (bool) Whether learning policy is the same as collecting data policy(on-policy).
        on_policy=False,
        # (bool) Whether to enable priority experience sample.
        priority=False,
        # (bool) Whether use Importance Sampling Weight to correct biased update. If True, priority must be True.
        priority_IS_weight=False,
        # (str) Which kind of action space used in IMPALAPolicy, ['discrete', 'continuous'].
        action_space='discrete',
        # (int) the trajectory length to calculate v-trace target.
        unroll_len=32,
        # (bool) Whether to need policy data in process transition.
        transition_with_policy_data=True,
        # learn_mode config
        learn=dict(
            # (int) collect n_sample data, train model update_per_collect times.
            update_per_collect=4,
            # (int) the number of data for a train iteration.
            batch_size=16,
            # (float) The step size of gradient descent.
            learning_rate=0.0005,
            # (float) loss weight of the value network, the weight of policy network is set to 1.
            value_weight=0.5,
            # (float) loss weight of the entropy regularization, the weight of policy network is set to 1.
            entropy_weight=0.0001,
            # (float) discount factor for future reward, defaults int [0, 1].
            discount_factor=0.99,
            # (float) additional discounting parameter.
            lambda_=0.95,
            # (float) clip ratio of importance weights.
            rho_clip_ratio=1.0,
            # (float) clip ratio of importance weights.
            c_clip_ratio=1.0,
            # (float) clip ratio of importance sampling.
            rho_pg_clip_ratio=1.0,
            # (str) The gradient clip operation type used in IMPALA, ['clip_norm', clip_value', 'clip_momentum_norm'].
            grad_clip_type=None,
            # (float) The gradient clip target value used in IMPALA.
            # If ``grad_clip_type`` is 'clip_norm', then the maximum of gradient will be normalized to this value.
            clip_value=0.5,
            # (str) Optimizer used to train the network, ['adam', 'rmsprop'].
            optim='adam',
        ),
        # collect_mode config
        collect=dict(
            # (int) How many training samples collected in one collection procedure.
            # Only one of [n_sample, n_episode] shoule be set.
            # n_sample=16,
        ),
        eval=dict(),  # for compatibility
        other=dict(
            replay_buffer=dict(
                # (int) Maximum size of replay buffer. Usually, larger buffer size is better.
                replay_buffer_size=1000,
                # (int) Maximum use times for a sample in buffer. If reaches this value, the sample will be removed.
                max_use=16,
            ),
        ),
    )

    def default_model(self) -> Tuple[str, List[str]]:
        """
        Overview:
            Return this algorithm default neural network model setting for demonstration. ``__init__`` method will \
            automatically call this method to get the default model setting and create model.
        Returns:
            - model_info (:obj:`Tuple[str, List[str]]`): The registered model name and model's import_names.

        .. note::
            The user can define and use customized network model but must obey the same inferface definition indicated \
            by import_names path. For example about IMPALA , its registered name is ``vac`` and the import_names is \
            ``ding.model.template.vac``.
        """
        return 'vac', ['ding.model.template.vac']

    def _init_learn(self) -> None:
        """
        Overview:
            Initialize the learn mode of policy, including related attributes and modules. For IMPALA, it mainly \
            contains optimizer, algorithm-specific arguments such as loss weight and gamma, main (learn) model.
            This method will be called in ``__init__`` method if ``learn`` field is in ``enable_field``.

        .. note::
            For the member variables that need to be saved and loaded, please refer to the ``_state_dict_learn`` \
            and ``_load_state_dict_learn`` methods.

        .. note::
            For the member variables that need to be monitored, please refer to the ``_monitor_vars_learn`` method.

        .. note::
            If you want to set some spacial member variables in ``_init_learn`` method, you'd better name them \
            with prefix ``_learn_`` to avoid conflict with other modes, such as ``self._learn_attr1``.
        """
        assert self._cfg.action_space in ["continuous", "discrete"], self._cfg.action_space
        self._action_space = self._cfg.action_space
        # Optimizer
        optim_type = self._cfg.learn.optim
        if optim_type == 'rmsprop':
            self._optimizer = RMSprop(self._model.parameters(), lr=self._cfg.learn.learning_rate)
        elif optim_type == 'adam':
            self._optimizer = Adam(
                self._model.parameters(),
                grad_clip_type=self._cfg.learn.grad_clip_type,
                clip_value=self._cfg.learn.clip_value,
                lr=self._cfg.learn.learning_rate
            )
        else:
            raise NotImplementedError("Now only support rmsprop and adam, but input is {}".format(optim_type))
        self._learn_model = model_wrap(self._model, wrapper_name='base')

        self._action_shape = self._cfg.model.action_shape
        self._unroll_len = self._cfg.unroll_len

        # Algorithm config
        self._priority = self._cfg.priority
        self._priority_IS_weight = self._cfg.priority_IS_weight
        self._value_weight = self._cfg.learn.value_weight
        self._entropy_weight = self._cfg.learn.entropy_weight
        self._gamma = self._cfg.learn.discount_factor
        self._lambda = self._cfg.learn.lambda_
        self._rho_clip_ratio = self._cfg.learn.rho_clip_ratio
        self._c_clip_ratio = self._cfg.learn.c_clip_ratio
        self._rho_pg_clip_ratio = self._cfg.learn.rho_pg_clip_ratio

        # Main model
        self._learn_model.reset()

    def _data_preprocess_learn(self, data: List[Dict[str, Any]]):
        """
        Overview:
            Data preprocess function of learn mode.
            Convert list trajectory data to to trajectory data, which is a dict of tensors.
        Arguments:
            - data (:obj:`List[Dict[str, Any]]`): List type data, a list of data for training. Each list element is a \
                dict, whose values are torch.Tensor or np.ndarray or dict/list combinations, keys include at least \
                'obs', 'next_obs', 'logit', 'action', 'reward', 'done'
        Returns:
            - data (:obj:`dict`): Dict type data. Values are torch.Tensor or np.ndarray or dict/list combinations. \
        ReturnsKeys:
            - necessary: 'logit', 'action', 'reward', 'done', 'weight', 'obs_plus_1'.
            - optional and not used in later computation: 'obs', 'next_obs'.'IS', 'collect_iter', 'replay_unique_id', \
                'replay_buffer_idx', 'priority', 'staleness', 'use'.
        ReturnsShapes:
            - obs_plus_1 (:obj:`torch.FloatTensor`): :math:`(T * B, obs_shape)`, where T is timestep, B is batch size \
                and obs_shape is the shape of single env observation
            - logit (:obj:`torch.FloatTensor`): :math:`(T, B, N)`, where N is action dim
            - action (:obj:`torch.LongTensor`): :math:`(T, B)`
            - reward (:obj:`torch.FloatTensor`): :math:`(T+1, B)`
            - done (:obj:`torch.FloatTensor`): :math:`(T, B)`
            - weight (:obj:`torch.FloatTensor`): :math:`(T, B)`
        """
        elem = data[0]
        if isinstance(elem, dict):  # old pipeline
            data = default_collate(data)
        elif isinstance(elem, list):  # new task pipeline
            data = default_collate(default_collate(data))
        else:
            raise TypeError("not support element type ({}) in IMPALA".format(type(elem)))
        if self._cuda:
            data = to_device(data, self._device)
        if self._priority_IS_weight:
            assert self._priority, "Use IS Weight correction, but Priority is not used."
        if self._priority and self._priority_IS_weight:
            data['weight'] = data['IS']
        else:
            data['weight'] = data.get('weight', None)
        if isinstance(elem, dict):  # old pipeline
            for k in data:
                if isinstance(data[k], list):
                    data[k] = default_collate(data[k])
        data['obs_plus_1'] = torch.cat([data['obs'], data['next_obs'][-1:]], dim=0)  # shape (T+1)*B,env_obs_shape
        return data

    def _forward_learn(self, data: List[Dict[str, Any]]) -> Dict[str, Any]:
        """
        Overview:
            Policy forward function of learn mode (training policy and updating parameters). Forward means \
            that the policy inputs some training batch data from the replay buffer and then returns the output \
            result, including various training information such as loss and current learning rate.
        Arguments:
            - data (:obj:`List[Dict[int, Any]]`): The input data used for policy forward, including a batch of \
                training samples. For each element in list, the key of the dict is the name of data items and the \
                value is the corresponding data. Usually, the value is torch.Tensor or np.ndarray or there dict/list \
                combinations. In the ``_forward_learn`` method, data often need to first be stacked in the batch \
                dimension by some utility functions such as ``default_preprocess_learn``. \
                For IMPALA, each element in list is a dict containing at least the following keys: ``obs``, \
                ``action``, ``logit``, ``reward``, ``next_obs``, ``done``. Sometimes, it also contains other keys such \
                as ``weight``.
        Returns:
            - info_dict (:obj:`Dict[str, Any]`): The information dict that indicated training result, which will be \
                recorded in text log and tensorboard, values must be python scalar or a list of scalars. For the \
                detailed definition of the dict, refer to the code of ``_monitor_vars_learn`` method.

        .. note::
            The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
            For the data type that not supported, the main reason is that the corresponding model does not support it. \
            You can implement you own model rather than use the default model. For more information, please raise an \
            issue in GitHub repo and we will continue to follow up.

        .. note::
            For more detailed examples, please refer to unittest for IMPALAPolicy: ``ding.policy.tests.test_impala``.
        """
        data = self._data_preprocess_learn(data)
        # ====================
        # IMPALA forward
        # ====================
        self._learn_model.train()
        output = self._learn_model.forward(
            data['obs_plus_1'].view((-1, ) + data['obs_plus_1'].shape[2:]), mode='compute_actor_critic'
        )
        target_logit, behaviour_logit, actions, values, rewards, weights = self._reshape_data(output, data)
        # Calculate vtrace error
        data = vtrace_data(target_logit, behaviour_logit, actions, values, rewards, weights)
        g, l, r, c, rg = self._gamma, self._lambda, self._rho_clip_ratio, self._c_clip_ratio, self._rho_pg_clip_ratio
        if self._action_space == 'continuous':
            vtrace_loss = vtrace_error_continuous_action(data, g, l, r, c, rg)
        elif self._action_space == 'discrete':
            vtrace_loss = vtrace_error_discrete_action(data, g, l, r, c, rg)

        wv, we = self._value_weight, self._entropy_weight
        total_loss = vtrace_loss.policy_loss + wv * vtrace_loss.value_loss - we * vtrace_loss.entropy_loss
        # ====================
        # IMPALA update
        # ====================
        self._optimizer.zero_grad()
        total_loss.backward()
        self._optimizer.step()
        return {
            'cur_lr': self._optimizer.defaults['lr'],
            'total_loss': total_loss.item(),
            'policy_loss': vtrace_loss.policy_loss.item(),
            'value_loss': vtrace_loss.value_loss.item(),
            'entropy_loss': vtrace_loss.entropy_loss.item(),
        }

    def _reshape_data(self, output: Dict[str, Any], data: Dict[str, Any]) -> Tuple:
        """
        Overview:
            Obtain weights for loss calculating, where should be 0 for done positions. Update values and rewards with \
            the weight.
        Arguments:
            - output (:obj:`Dict[int, Any]`): Dict type data, output of learn_model forward. \
                Values are torch.Tensor or np.ndarray or dict/list combinations,keys are value, logit.
            - data (:obj:`Dict[int, Any]`): Dict type data, input of policy._forward_learn Values are torch.Tensor or \
                np.ndarray or dict/list combinations. Keys includes at least ['logit', 'action', 'reward', 'done'].
        Returns:
            - data (:obj:`Tuple[Any]`): Tuple of target_logit, behaviour_logit, actions, values, rewards, weights.
        ReturnsShapes:
            - target_logit (:obj:`torch.FloatTensor`): :math:`((T+1), B, Obs_Shape)`, where T is timestep,\
                B is batch size and Obs_Shape is the shape of single env observation.
            - behaviour_logit (:obj:`torch.FloatTensor`): :math:`(T, B, N)`, where N is action dim.
            - actions (:obj:`torch.LongTensor`): :math:`(T, B)`
            - values (:obj:`torch.FloatTensor`): :math:`(T+1, B)`
            - rewards (:obj:`torch.FloatTensor`): :math:`(T, B)`
            - weights (:obj:`torch.FloatTensor`): :math:`(T, B)`
        """
        if self._action_space == 'continuous':
            target_logit = {}
            target_logit['mu'] = output['logit']['mu'].reshape(self._unroll_len + 1, -1,
                                                               self._action_shape)[:-1
                                                                                   ]  # shape (T+1),B,env_action_shape
            target_logit['sigma'] = output['logit']['sigma'].reshape(self._unroll_len + 1, -1, self._action_shape
                                                                     )[:-1]  # shape (T+1),B,env_action_shape
        elif self._action_space == 'discrete':
            target_logit = output['logit'].reshape(self._unroll_len + 1, -1,
                                                   self._action_shape)[:-1]  # shape (T+1),B,env_action_shape
        behaviour_logit = data['logit']  # shape T,B
        actions = data['action']  # shape T,B for discrete # shape T,B,env_action_shape for continuous
        values = output['value'].reshape(self._unroll_len + 1, -1)  # shape T+1,B,env_action_shape
        rewards = data['reward']  # shape T,B
        weights_ = 1 - data['done'].float()  # shape T,B
        weights = torch.ones_like(rewards)  # shape T,B
        values[1:] = values[1:] * weights_
        weights[1:] = weights_[:-1]
        rewards = rewards * weights  # shape T,B
        return target_logit, behaviour_logit, actions, values, rewards, weights

    def _init_collect(self) -> None:
        """
        Overview:
            Initialize the collect mode of policy, including related attributes and modules. For IMPALA, it contains \
            the collect_model to balance the exploration and exploitation (e.g. the multinomial sample mechanism in \
            discrete action space), and other algorithm-specific arguments such as unroll_len.
            This method will be called in ``__init__`` method if ``collect`` field is in ``enable_field``.

        .. note::
            If you want to set some spacial member variables in ``_init_collect`` method, you'd better name them \
            with prefix ``_collect_`` to avoid conflict with other modes, such as ``self._collect_attr1``.
        """
        assert self._cfg.action_space in ["continuous", "discrete"]
        self._action_space = self._cfg.action_space
        if self._action_space == 'continuous':
            self._collect_model = model_wrap(self._model, wrapper_name='reparam_sample')
        elif self._action_space == 'discrete':
            self._collect_model = model_wrap(self._model, wrapper_name='multinomial_sample')

        self._collect_model.reset()

    def _forward_collect(self, data: Dict[int, Any]) -> Dict[int, Any]:
        """
        Overview:
            Policy forward function of collect mode (collecting training data by interacting with envs). Forward means \
            that the policy gets some necessary data (mainly observation) from the envs and then returns the output \
            data, such as the action to interact with the envs.
        Arguments:
            - data (:obj:`Dict[int, Any]`): The input data used for policy forward, including at least the obs. The \
                key of the dict is environment id and the value is the corresponding data of the env.
        Returns:
            - output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action and \
                other necessary data (action logit and value) for learn mode defined in ``self._process_transition`` \
                method. The key of the dict is the same as the input data, i.e. environment id.

        .. tip::
            If you want to add more tricks on this policy, like temperature factor in multinomial sample, you can pass \
            related data as extra keyword arguments of this method.

        .. note::
            The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
            For the data type that not supported, the main reason is that the corresponding model does not support it. \
            You can implement you own model rather than use the default model. For more information, please raise an \
            issue in GitHub repo and we will continue to follow up.

        .. note::
            For more detailed examples, please refer to unittest for IMPALAPolicy: ``ding.policy.tests.test_impala``.
        """
        data_id = list(data.keys())
        data = default_collate(list(data.values()))
        if self._cuda:
            data = to_device(data, self._device)
        self._collect_model.eval()
        with torch.no_grad():
            output = self._collect_model.forward(data, mode='compute_actor')
        if self._cuda:
            output = to_device(output, 'cpu')
        output = default_decollate(output)
        output = {i: d for i, d in zip(data_id, output)}
        return output

    def _get_train_sample(self, data: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
        """
        Overview:
            For a given trajectory (transitions, a list of transition) data, process it into a list of sample that \
            can be used for training. In IMPALA, a train sample is processed transitions with unroll_len length.
        Arguments:
            - transitions (:obj:`List[Dict[str, Any]`): The trajectory data (a list of transition), each element is \
                the same format as the return value of ``self._process_transition`` method.
        Returns:
            - samples (:obj:`List[Dict[str, Any]]`): The processed train samples, each element is the similar format \
                as input transitions, but may contain more data for training.
        """
        return get_train_sample(data, self._unroll_len)

    def _process_transition(self, obs: torch.Tensor, policy_output: Dict[str, torch.Tensor],
                            timestep: namedtuple) -> Dict[str, torch.Tensor]:
        """
        Overview:
            Process and pack one timestep transition data into a dict, which can be directly used for training and \
            saved in replay buffer. For IMPALA, it contains obs, next_obs, action, reward, done, logit.
        Arguments:
            - obs (:obj:`torch.Tensor`): The env observation of current timestep, such as stacked 2D image in Atari.
            - policy_output (:obj:`Dict[str, torch.Tensor]`): The output of the policy network with the observation \
                as input. For IMPALA, it contains the action and the logit of the action.
            - timestep (:obj:`namedtuple`): The execution result namedtuple returned by the environment step method, \
                except all the elements have been transformed into tensor data. Usually, it contains the next obs, \
                reward, done, info, etc.
        Returns:
            - transition (:obj:`Dict[str, torch.Tensor]`): The processed transition data of the current timestep.
        """
        transition = {
            'obs': obs,
            'next_obs': timestep.obs,
            'logit': policy_output['logit'],
            'action': policy_output['action'],
            'reward': timestep.reward,
            'done': timestep.done,
        }
        return transition

    def _init_eval(self) -> None:
        """
        Overview:
            Initialize the eval mode of policy, including related attributes and modules. For IMPALA, it contains the \
            eval model to select optimial action (e.g. greedily select action with argmax mechanism in discrete action).
            This method will be called in ``__init__`` method if ``eval`` field is in ``enable_field``.

        .. note::
            If you want to set some spacial member variables in ``_init_eval`` method, you'd better name them \
            with prefix ``_eval_`` to avoid conflict with other modes, such as ``self._eval_attr1``.
        """
        assert self._cfg.action_space in ["continuous", "discrete"], self._cfg.action_space
        self._action_space = self._cfg.action_space
        if self._action_space == 'continuous':
            self._eval_model = model_wrap(self._model, wrapper_name='deterministic_sample')
        elif self._action_space == 'discrete':
            self._eval_model = model_wrap(self._model, wrapper_name='argmax_sample')

        self._eval_model.reset()

    def _forward_eval(self, data: Dict[int, Any]) -> Dict[int, Any]:
        """
        Overview:
            Policy forward function of eval mode (evaluation policy performance by interacting with envs). Forward \
            means that the policy gets some necessary data (mainly observation) from the envs and then returns the \
            action to interact with the envs. ``_forward_eval`` in IMPALA often uses deterministic sample to get \
            actions while ``_forward_collect`` usually uses stochastic sample method for balance exploration and \
            exploitation.
        Arguments:
            - data (:obj:`Dict[int, Any]`): The input data used for policy forward, including at least the obs. The \
                key of the dict is environment id and the value is the corresponding data of the env.
        Returns:
            - output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action. The \
                key of the dict is the same as the input data, i.e. environment id.

        .. note::
            The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
            For the data type that not supported, the main reason is that the corresponding model does not support it. \
            You can implement you own model rather than use the default model. For more information, please raise an \
            issue in GitHub repo and we will continue to follow up.

        .. note::
            For more detailed examples, please refer to unittest for IMPALAPolicy: ``ding.policy.tests.test_impala``.
        """
        data_id = list(data.keys())
        data = default_collate(list(data.values()))
        if self._cuda:
            data = to_device(data, self._device)
        self._eval_model.eval()
        with torch.no_grad():
            output = self._eval_model.forward(data, mode='compute_actor')
        if self._cuda:
            output = to_device(output, 'cpu')
        output = default_decollate(output)
        output = {i: d for i, d in zip(data_id, output)}
        return output

    def _monitor_vars_learn(self) -> List[str]:
        """
        Overview:
            Return the necessary keys for logging the return dict of ``self._forward_learn``. The logger module, such \
            as text logger, tensorboard logger, will use these keys to save the corresponding data.
        Returns:
            - necessary_keys (:obj:`List[str]`): The list of the necessary keys to be logged.
        """
        return super()._monitor_vars_learn() + ['policy_loss', 'value_loss', 'entropy_loss']