Spaces:
Sleeping
Sleeping
File size: 78,630 Bytes
3dfe8fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 |
from typing import List, Dict, Any, Tuple, Union
from collections import namedtuple
import copy
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.distributions import Normal, Independent
from ding.torch_utils import Adam, to_device
from ding.rl_utils import v_1step_td_data, v_1step_td_error, get_train_sample, q_v_1step_td_error, q_v_1step_td_data
from ding.model import model_wrap
from ding.utils import POLICY_REGISTRY
from ding.utils.data import default_collate, default_decollate
from .base_policy import Policy
from .common_utils import default_preprocess_learn
@POLICY_REGISTRY.register('discrete_sac')
class DiscreteSACPolicy(Policy):
"""
Overview:
Policy class of discrete SAC algorithm. Paper link: https://arxiv.org/abs/1910.07207.
"""
config = dict(
# (str) RL policy register name (refer to function "POLICY_REGISTRY").
type='discrete_sac',
# (bool) Whether to use cuda for network and loss computation.
cuda=False,
# (bool) Whether to belong to on-policy or off-policy algorithm, DiscreteSAC is an off-policy algorithm.
on_policy=False,
# (bool) Whether to use priority sampling in buffer. Default to False in DiscreteSAC.
priority=False,
# (bool) Whether use Importance Sampling weight to correct biased update. If True, priority must be True.
priority_IS_weight=False,
# (int) Number of training samples (randomly collected) in replay buffer when training starts.
random_collect_size=10000,
# (bool) Whether to need policy-specific data in process transition.
transition_with_policy_data=True,
# (bool) Whether to enable multi-agent training setting.
multi_agent=False,
model=dict(
# (bool) Whether to use double-soft-q-net for target q computation.
# For more details, please refer to TD3 about Clipped Double-Q Learning trick.
twin_critic=True,
),
# learn_mode config
learn=dict(
# (int) How many updates (iterations) to train after collector's one collection.
# Bigger "update_per_collect" means bigger off-policy.
update_per_collect=1,
# (int) Minibatch size for one gradient descent.
batch_size=256,
# (float) Learning rate for soft q network.
learning_rate_q=3e-4,
# (float) Learning rate for policy network.
learning_rate_policy=3e-4,
# (float) Learning rate for auto temperature parameter `\alpha`.
learning_rate_alpha=3e-4,
# (float) Used for soft update of the target network,
# aka. Interpolation factor in EMA update for target network.
target_theta=0.005,
# (float) Discount factor for the discounted sum of rewards, aka. gamma.
discount_factor=0.99,
# (float) Entropy regularization coefficient in SAC.
# Please check out the original SAC paper (arXiv 1801.01290): Eq 1 for more details.
# If auto_alpha is set to `True`, alpha is initialization for auto `\alpha`.
alpha=0.2,
# (bool) Whether to use auto temperature parameter `\alpha` .
# Temperature parameter `\alpha` determines the relative importance of the entropy term against the reward.
# Please check out the original SAC paper (arXiv 1801.01290): Eq 1 for more details.
# Note that: Using auto alpha needs to set the above `learning_rate_alpha`.
auto_alpha=True,
# (bool) Whether to use auto `\alpha` in log space.
log_space=True,
# (float) Target policy entropy value for auto temperature (alpha) adjustment.
target_entropy=None,
# (bool) Whether ignore done(usually for max step termination env. e.g. pendulum)
# Note: Gym wraps the MuJoCo envs by default with TimeLimit environment wrappers.
# These limit HalfCheetah, and several other MuJoCo envs, to max length of 1000.
# However, interaction with HalfCheetah always gets done with done is False,
# Since we inplace done==True with done==False to keep
# TD-error accurate computation(``gamma * (1 - done) * next_v + reward``),
# when the episode step is greater than max episode step.
ignore_done=False,
# (float) Weight uniform initialization max range in the last output layer
init_w=3e-3,
),
# collect_mode config
collect=dict(
# (int) How many training samples collected in one collection procedure.
# Only one of [n_sample, n_episode] shoule be set.
n_sample=1,
# (int) Split episodes or trajectories into pieces with length `unroll_len`.
unroll_len=1,
# (bool) Whether to collect logit in `process_transition`.
# In some algorithm like guided cost learning, we need to use logit to train the reward model.
collector_logit=False,
),
eval=dict(), # for compability
other=dict(
replay_buffer=dict(
# (int) Maximum size of replay buffer. Usually, larger buffer size is good
# for SAC but cost more storage.
replay_buffer_size=1000000,
),
),
)
def default_model(self) -> Tuple[str, List[str]]:
"""
Overview:
Return this algorithm default neural network model setting for demonstration. ``__init__`` method will \
automatically call this method to get the default model setting and create model.
Returns:
- model_info (:obj:`Tuple[str, List[str]]`): The registered model name and model's import_names.
"""
if self._cfg.multi_agent:
return 'discrete_maqac', ['ding.model.template.maqac']
else:
return 'discrete_qac', ['ding.model.template.qac']
def _init_learn(self) -> None:
"""
Overview:
Initialize the learn mode of policy, including related attributes and modules. For DiscreteSAC, it mainly \
contains three optimizers, algorithm-specific arguments such as gamma and twin_critic, main and target \
model. Especially, the ``auto_alpha`` mechanism for balancing max entropy target is also initialized here.
This method will be called in ``__init__`` method if ``learn`` field is in ``enable_field``.
.. note::
For the member variables that need to be saved and loaded, please refer to the ``_state_dict_learn`` \
and ``_load_state_dict_learn`` methods.
.. note::
For the member variables that need to be monitored, please refer to the ``_monitor_vars_learn`` method.
.. note::
If you want to set some spacial member variables in ``_init_learn`` method, you'd better name them \
with prefix ``_learn_`` to avoid conflict with other modes, such as ``self._learn_attr1``.
"""
self._priority = self._cfg.priority
self._priority_IS_weight = self._cfg.priority_IS_weight
self._twin_critic = self._cfg.model.twin_critic
self._optimizer_q = Adam(
self._model.critic.parameters(),
lr=self._cfg.learn.learning_rate_q,
)
self._optimizer_policy = Adam(
self._model.actor.parameters(),
lr=self._cfg.learn.learning_rate_policy,
)
# Algorithm-Specific Config
self._gamma = self._cfg.learn.discount_factor
if self._cfg.learn.auto_alpha:
if self._cfg.learn.target_entropy is None:
assert 'action_shape' in self._cfg.model, "DiscreteSAC need network model with action_shape variable"
self._target_entropy = -np.prod(self._cfg.model.action_shape)
else:
self._target_entropy = self._cfg.learn.target_entropy
if self._cfg.learn.log_space:
self._log_alpha = torch.log(torch.FloatTensor([self._cfg.learn.alpha]))
self._log_alpha = self._log_alpha.to(self._device).requires_grad_()
self._alpha_optim = torch.optim.Adam([self._log_alpha], lr=self._cfg.learn.learning_rate_alpha)
assert self._log_alpha.shape == torch.Size([1]) and self._log_alpha.requires_grad
self._alpha = self._log_alpha.detach().exp()
self._auto_alpha = True
self._log_space = True
else:
self._alpha = torch.FloatTensor([self._cfg.learn.alpha]).to(self._device).requires_grad_()
self._alpha_optim = torch.optim.Adam([self._alpha], lr=self._cfg.learn.learning_rate_alpha)
self._auto_alpha = True
self._log_space = False
else:
self._alpha = torch.tensor(
[self._cfg.learn.alpha], requires_grad=False, device=self._device, dtype=torch.float32
)
self._auto_alpha = False
# Main and target models
self._target_model = copy.deepcopy(self._model)
self._target_model = model_wrap(
self._target_model,
wrapper_name='target',
update_type='momentum',
update_kwargs={'theta': self._cfg.learn.target_theta}
)
self._learn_model = model_wrap(self._model, wrapper_name='base')
self._learn_model.reset()
self._target_model.reset()
def _forward_learn(self, data: List[Dict[str, Any]]) -> Dict[str, Any]:
"""
Overview:
Policy forward function of learn mode (training policy and updating parameters). Forward means \
that the policy inputs some training batch data from the replay buffer and then returns the output \
result, including various training information such as loss, action, priority.
Arguments:
- data (:obj:`List[Dict[int, Any]]`): The input data used for policy forward, including a batch of \
training samples. For each element in list, the key of the dict is the name of data items and the \
value is the corresponding data. Usually, the value is torch.Tensor or np.ndarray or there dict/list \
combinations. In the ``_forward_learn`` method, data often need to first be stacked in the batch \
dimension by some utility functions such as ``default_preprocess_learn``. \
For SAC, each element in list is a dict containing at least the following keys: ``obs``, ``action``, \
``logit``, ``reward``, ``next_obs``, ``done``. Sometimes, it also contains other keys like ``weight``.
Returns:
- info_dict (:obj:`Dict[str, Any]`): The information dict that indicated training result, which will be \
recorded in text log and tensorboard, values must be python scalar or a list of scalars. For the \
detailed definition of the dict, refer to the code of ``_monitor_vars_learn`` method.
.. note::
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
For the data type that not supported, the main reason is that the corresponding model does not support it. \
You can implement you own model rather than use the default model. For more information, please raise an \
issue in GitHub repo and we will continue to follow up.
.. note::
For more detailed examples, please refer to our unittest for DiscreteSACPolicy: \
``ding.policy.tests.test_discrete_sac``.
"""
loss_dict = {}
data = default_preprocess_learn(
data,
use_priority=self._priority,
use_priority_IS_weight=self._cfg.priority_IS_weight,
ignore_done=self._cfg.learn.ignore_done,
use_nstep=False
)
if self._cuda:
data = to_device(data, self._device)
self._learn_model.train()
self._target_model.train()
obs = data['obs']
next_obs = data['next_obs']
reward = data['reward']
done = data['done']
logit = data['logit']
action = data['action']
# 1. predict q value
q_value = self._learn_model.forward(obs, mode='compute_critic')['q_value']
dist = torch.distributions.categorical.Categorical(logits=logit)
dist_entropy = dist.entropy()
entropy = dist_entropy.mean()
# 2. predict target value
# target q value. SARSA: first predict next action, then calculate next q value
with torch.no_grad():
policy_output_next = self._learn_model.forward(next_obs, mode='compute_actor')
if self._cfg.multi_agent:
policy_output_next['logit'][policy_output_next['action_mask'] == 0.0] = -1e8
prob = F.softmax(policy_output_next['logit'], dim=-1)
log_prob = torch.log(prob + 1e-8)
target_q_value = self._target_model.forward(next_obs, mode='compute_critic')['q_value']
# the value of a policy according to the maximum entropy objective
if self._twin_critic:
# find min one as target q value
target_value = (
prob * (torch.min(target_q_value[0], target_q_value[1]) - self._alpha * log_prob.squeeze(-1))
).sum(dim=-1)
else:
target_value = (prob * (target_q_value - self._alpha * log_prob.squeeze(-1))).sum(dim=-1)
# 3. compute q loss
if self._twin_critic:
q_data0 = q_v_1step_td_data(q_value[0], target_value, action, reward, done, data['weight'])
loss_dict['critic_loss'], td_error_per_sample0 = q_v_1step_td_error(q_data0, self._gamma)
q_data1 = q_v_1step_td_data(q_value[1], target_value, action, reward, done, data['weight'])
loss_dict['twin_critic_loss'], td_error_per_sample1 = q_v_1step_td_error(q_data1, self._gamma)
td_error_per_sample = (td_error_per_sample0 + td_error_per_sample1) / 2
else:
q_data = q_v_1step_td_data(q_value, target_value, action, reward, done, data['weight'])
loss_dict['critic_loss'], td_error_per_sample = q_v_1step_td_error(q_data, self._gamma)
# 4. update q network
self._optimizer_q.zero_grad()
loss_dict['critic_loss'].backward()
if self._twin_critic:
loss_dict['twin_critic_loss'].backward()
self._optimizer_q.step()
# 5. evaluate to get action distribution
policy_output = self._learn_model.forward(obs, mode='compute_actor')
# 6. apply discrete action mask in multi_agent setting
if self._cfg.multi_agent:
policy_output['logit'][policy_output['action_mask'] == 0.0] = -1e8
logit = policy_output['logit']
prob = F.softmax(logit, dim=-1)
log_prob = F.log_softmax(logit, dim=-1)
with torch.no_grad():
new_q_value = self._learn_model.forward(obs, mode='compute_critic')['q_value']
if self._twin_critic:
new_q_value = torch.min(new_q_value[0], new_q_value[1])
# 7. compute policy loss
# we need to sum different actions' policy loss and calculate the average value of a batch
policy_loss = (prob * (self._alpha * log_prob - new_q_value)).sum(dim=-1).mean()
loss_dict['policy_loss'] = policy_loss
# 8. update policy network
self._optimizer_policy.zero_grad()
loss_dict['policy_loss'].backward()
self._optimizer_policy.step()
# 9. compute alpha loss
if self._auto_alpha:
if self._log_space:
log_prob = log_prob + self._target_entropy
loss_dict['alpha_loss'] = (-prob.detach() * (self._log_alpha * log_prob.detach())).sum(dim=-1).mean()
self._alpha_optim.zero_grad()
loss_dict['alpha_loss'].backward()
self._alpha_optim.step()
self._alpha = self._log_alpha.detach().exp()
else:
log_prob = log_prob + self._target_entropy
loss_dict['alpha_loss'] = (-prob.detach() * (self._alpha * log_prob.detach())).sum(dim=-1).mean()
self._alpha_optim.zero_grad()
loss_dict['alpha_loss'].backward()
self._alpha_optim.step()
self._alpha.data = torch.where(self._alpha > 0, self._alpha,
torch.zeros_like(self._alpha)).requires_grad_()
loss_dict['total_loss'] = sum(loss_dict.values())
# target update
self._target_model.update(self._learn_model.state_dict())
return {
'total_loss': loss_dict['total_loss'].item(),
'policy_loss': loss_dict['policy_loss'].item(),
'critic_loss': loss_dict['critic_loss'].item(),
'cur_lr_q': self._optimizer_q.defaults['lr'],
'cur_lr_p': self._optimizer_policy.defaults['lr'],
'priority': td_error_per_sample.abs().tolist(),
'td_error': td_error_per_sample.detach().mean().item(),
'alpha': self._alpha.item(),
'q_value_1': target_q_value[0].detach().mean().item(),
'q_value_2': target_q_value[1].detach().mean().item(),
'target_value': target_value.detach().mean().item(),
'entropy': entropy.item(),
}
def _state_dict_learn(self) -> Dict[str, Any]:
"""
Overview:
Return the state_dict of learn mode, usually including model, target_model and optimizers.
Returns:
- state_dict (:obj:`Dict[str, Any]`): The dict of current policy learn state, for saving and restoring.
"""
ret = {
'model': self._learn_model.state_dict(),
'target_model': self._target_model.state_dict(),
'optimizer_q': self._optimizer_q.state_dict(),
'optimizer_policy': self._optimizer_policy.state_dict(),
}
if self._auto_alpha:
ret.update({'optimizer_alpha': self._alpha_optim.state_dict()})
return ret
def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None:
"""
Overview:
Load the state_dict variable into policy learn mode.
Arguments:
- state_dict (:obj:`Dict[str, Any]`): The dict of policy learn state saved before.
.. tip::
If you want to only load some parts of model, you can simply set the ``strict`` argument in \
load_state_dict to ``False``, or refer to ``ding.torch_utils.checkpoint_helper`` for more \
complicated operation.
"""
self._learn_model.load_state_dict(state_dict['model'])
self._target_model.load_state_dict(state_dict['target_model'])
self._optimizer_q.load_state_dict(state_dict['optimizer_q'])
self._optimizer_policy.load_state_dict(state_dict['optimizer_policy'])
if self._auto_alpha:
self._alpha_optim.load_state_dict(state_dict['optimizer_alpha'])
def _init_collect(self) -> None:
"""
Overview:
Initialize the collect mode of policy, including related attributes and modules. For SAC, it contains the \
collect_model to balance the exploration and exploitation with the epsilon and multinomial sample \
mechanism, and other algorithm-specific arguments such as unroll_len. \
This method will be called in ``__init__`` method if ``collect`` field is in ``enable_field``.
.. note::
If you want to set some spacial member variables in ``_init_collect`` method, you'd better name them \
with prefix ``_collect_`` to avoid conflict with other modes, such as ``self._collect_attr1``.
"""
self._unroll_len = self._cfg.collect.unroll_len
# Empirically, we found that eps_greedy_multinomial_sample works better than multinomial_sample
# and eps_greedy_sample, and we don't divide logit by alpha,
# for the details please refer to ding/model/wrapper/model_wrappers
self._collect_model = model_wrap(self._model, wrapper_name='eps_greedy_multinomial_sample')
self._collect_model.reset()
def _forward_collect(self, data: Dict[int, Any], eps: float) -> Dict[int, Any]:
"""
Overview:
Policy forward function of collect mode (collecting training data by interacting with envs). Forward means \
that the policy gets some necessary data (mainly observation) from the envs and then returns the output \
data, such as the action to interact with the envs. Besides, this policy also needs ``eps`` argument for \
exploration, i.e., classic epsilon-greedy exploration strategy.
Arguments:
- data (:obj:`Dict[int, Any]`): The input data used for policy forward, including at least the obs. The \
key of the dict is environment id and the value is the corresponding data of the env.
- eps (:obj:`float`): The epsilon value for exploration.
Returns:
- output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action and \
other necessary data for learn mode defined in ``self._process_transition`` method. The key of the \
dict is the same as the input data, i.e. environment id.
.. note::
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
For the data type that not supported, the main reason is that the corresponding model does not support it. \
You can implement you own model rather than use the default model. For more information, please raise an \
issue in GitHub repo and we will continue to follow up.
.. note::
For more detailed examples, please refer to our unittest for DiscreteSACPolicy: \
``ding.policy.tests.test_discrete_sac``.
"""
data_id = list(data.keys())
data = default_collate(list(data.values()))
if self._cuda:
data = to_device(data, self._device)
self._collect_model.eval()
with torch.no_grad():
output = self._collect_model.forward(data, mode='compute_actor', eps=eps)
if self._cuda:
output = to_device(output, 'cpu')
output = default_decollate(output)
return {i: d for i, d in zip(data_id, output)}
def _process_transition(self, obs: torch.Tensor, policy_output: Dict[str, torch.Tensor],
timestep: namedtuple) -> Dict[str, torch.Tensor]:
"""
Overview:
Process and pack one timestep transition data into a dict, which can be directly used for training and \
saved in replay buffer. For discrete SAC, it contains obs, next_obs, logit, action, reward, done.
Arguments:
- obs (:obj:`torch.Tensor`): The env observation of current timestep, such as stacked 2D image in Atari.
- policy_output (:obj:`Dict[str, torch.Tensor]`): The output of the policy network with the observation \
as input. For discrete SAC, it contains the action and the logit of the action.
- timestep (:obj:`namedtuple`): The execution result namedtuple returned by the environment step method, \
except all the elements have been transformed into tensor data. Usually, it contains the next obs, \
reward, done, info, etc.
Returns:
- transition (:obj:`Dict[str, torch.Tensor]`): The processed transition data of the current timestep.
"""
transition = {
'obs': obs,
'next_obs': timestep.obs,
'action': policy_output['action'],
'logit': policy_output['logit'],
'reward': timestep.reward,
'done': timestep.done,
}
return transition
def _get_train_sample(self, transitions: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""
Overview:
For a given trajectory (transitions, a list of transition) data, process it into a list of sample that \
can be used for training directly. In discrete SAC, a train sample is a processed transition (unroll_len=1).
Arguments:
- transitions (:obj:`List[Dict[str, Any]`): The trajectory data (a list of transition), each element is \
the same format as the return value of ``self._process_transition`` method.
Returns:
- samples (:obj:`List[Dict[str, Any]]`): The processed train samples, each element is the similar format \
as input transitions, but may contain more data for training.
"""
return get_train_sample(transitions, self._unroll_len)
def _init_eval(self) -> None:
"""
Overview:
Initialize the eval mode of policy, including related attributes and modules. For DiscreteSAC, it contains \
the eval model to greedily select action type with argmax q_value mechanism.
This method will be called in ``__init__`` method if ``eval`` field is in ``enable_field``.
.. note::
If you want to set some spacial member variables in ``_init_eval`` method, you'd better name them \
with prefix ``_eval_`` to avoid conflict with other modes, such as ``self._eval_attr1``.
"""
self._eval_model = model_wrap(self._model, wrapper_name='argmax_sample')
self._eval_model.reset()
def _forward_eval(self, data: Dict[int, Any]) -> Dict[int, Any]:
"""
Overview:
Policy forward function of eval mode (evaluation policy performance by interacting with envs). Forward \
means that the policy gets some necessary data (mainly observation) from the envs and then returns the \
action to interact with the envs.
Arguments:
- data (:obj:`Dict[int, Any]`): The input data used for policy forward, including at least the obs. The \
key of the dict is environment id and the value is the corresponding data of the env.
Returns:
- output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action. The \
key of the dict is the same as the input data, i.e. environment id.
.. note::
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
For the data type that not supported, the main reason is that the corresponding model does not support it. \
You can implement you own model rather than use the default model. For more information, please raise an \
issue in GitHub repo and we will continue to follow up.
.. note::
For more detailed examples, please refer to our unittest for DiscreteSACPolicy: \
``ding.policy.tests.test_discrete_sac``.
"""
data_id = list(data.keys())
data = default_collate(list(data.values()))
if self._cuda:
data = to_device(data, self._device)
self._eval_model.eval()
with torch.no_grad():
output = self._eval_model.forward(data, mode='compute_actor')
if self._cuda:
output = to_device(output, 'cpu')
output = default_decollate(output)
return {i: d for i, d in zip(data_id, output)}
def _monitor_vars_learn(self) -> List[str]:
"""
Overview:
Return the necessary keys for logging the return dict of ``self._forward_learn``. The logger module, such \
as text logger, tensorboard logger, will use these keys to save the corresponding data.
Returns:
- necessary_keys (:obj:`List[str]`): The list of the necessary keys to be logged.
"""
twin_critic = ['twin_critic_loss'] if self._twin_critic else []
if self._auto_alpha:
return super()._monitor_vars_learn() + [
'alpha_loss', 'policy_loss', 'critic_loss', 'cur_lr_q', 'cur_lr_p', 'target_q_value', 'q_value_1',
'q_value_2', 'alpha', 'td_error', 'target_value', 'entropy'
] + twin_critic
else:
return super()._monitor_vars_learn() + [
'policy_loss', 'critic_loss', 'cur_lr_q', 'cur_lr_p', 'target_q_value', 'q_value_1', 'q_value_2',
'alpha', 'td_error', 'target_value', 'entropy'
] + twin_critic
@POLICY_REGISTRY.register('sac')
class SACPolicy(Policy):
"""
Overview:
Policy class of continuous SAC algorithm. Paper link: https://arxiv.org/pdf/1801.01290.pdf
Config:
== ==================== ======== ============= ================================= =======================
ID Symbol Type Default Value Description Other
== ==================== ======== ============= ================================= =======================
1 ``type`` str sac | RL policy register name, refer | this arg is optional,
| to registry ``POLICY_REGISTRY`` | a placeholder
2 ``cuda`` bool True | Whether to use cuda for network |
3 ``on_policy`` bool False | SAC is an off-policy |
| algorithm. |
4 ``priority`` bool False | Whether to use priority |
| sampling in buffer. |
5 | ``priority_IS_`` bool False | Whether use Importance Sampling |
| ``weight`` | weight to correct biased update |
6 | ``random_`` int 10000 | Number of randomly collected | Default to 10000 for
| ``collect_size`` | training samples in replay | SAC, 25000 for DDPG/
| | buffer when training starts. | TD3.
7 | ``learn.learning`` float 3e-4 | Learning rate for soft q | Defalut to 1e-3
| ``_rate_q`` | network. |
8 | ``learn.learning`` float 3e-4 | Learning rate for policy | Defalut to 1e-3
| ``_rate_policy`` | network. |
9 | ``learn.alpha`` float 0.2 | Entropy regularization | alpha is initiali-
| | coefficient. | zation for auto
| | | alpha, when
| | | auto_alpha is True
10 | ``learn.`` bool False | Determine whether to use | Temperature parameter
| ``auto_alpha`` | auto temperature parameter | determines the
| | alpha. | relative importance
| | | of the entropy term
| | | against the reward.
11 | ``learn.-`` bool False | Determine whether to ignore | Use ignore_done only
| ``ignore_done`` | done flag. | in env like Pendulum
12 | ``learn.-`` float 0.005 | Used for soft update of the | aka. Interpolation
| ``target_theta`` | target network. | factor in polyak aver
| | | aging for target
| | | networks.
== ==================== ======== ============= ================================= =======================
"""
config = dict(
# (str) RL policy register name (refer to function "POLICY_REGISTRY").
type='sac',
# (bool) Whether to use cuda for network and loss computation.
cuda=False,
# (bool) Whether to belong to on-policy or off-policy algorithm, SAC is an off-policy algorithm.
on_policy=False,
# (bool) Whether to use priority sampling in buffer. Default to False in SAC.
priority=False,
# (bool) Whether use Importance Sampling weight to correct biased update. If True, priority must be True.
priority_IS_weight=False,
# (int) Number of training samples (randomly collected) in replay buffer when training starts.
random_collect_size=10000,
# (bool) Whether to need policy-specific data in process transition.
transition_with_policy_data=True,
# (bool) Whether to enable multi-agent training setting.
multi_agent=False,
model=dict(
# (bool) Whether to use double-soft-q-net for target q computation.
# For more details, please refer to TD3 about Clipped Double-Q Learning trick.
twin_critic=True,
# (str) Use reparameterization trick for continous action.
action_space='reparameterization',
),
# learn_mode config
learn=dict(
# (int) How many updates (iterations) to train after collector's one collection.
# Bigger "update_per_collect" means bigger off-policy.
update_per_collect=1,
# (int) Minibatch size for one gradient descent.
batch_size=256,
# (float) Learning rate for soft q network.
learning_rate_q=3e-4,
# (float) Learning rate for policy network.
learning_rate_policy=3e-4,
# (float) Learning rate for auto temperature parameter `\alpha`.
learning_rate_alpha=3e-4,
# (float) Used for soft update of the target network,
# aka. Interpolation factor in EMA update for target network.
target_theta=0.005,
# (float) discount factor for the discounted sum of rewards, aka. gamma.
discount_factor=0.99,
# (float) Entropy regularization coefficient in SAC.
# Please check out the original SAC paper (arXiv 1801.01290): Eq 1 for more details.
# If auto_alpha is set to `True`, alpha is initialization for auto `\alpha`.
alpha=0.2,
# (bool) Whether to use auto temperature parameter `\alpha` .
# Temperature parameter `\alpha` determines the relative importance of the entropy term against the reward.
# Please check out the original SAC paper (arXiv 1801.01290): Eq 1 for more details.
# Note that: Using auto alpha needs to set the above `learning_rate_alpha`.
auto_alpha=True,
# (bool) Whether to use auto `\alpha` in log space.
log_space=True,
# (float) Target policy entropy value for auto temperature (alpha) adjustment.
target_entropy=None,
# (bool) Whether ignore done(usually for max step termination env. e.g. pendulum)
# Note: Gym wraps the MuJoCo envs by default with TimeLimit environment wrappers.
# These limit HalfCheetah, and several other MuJoCo envs, to max length of 1000.
# However, interaction with HalfCheetah always gets done with False,
# Since we inplace done==True with done==False to keep
# TD-error accurate computation(``gamma * (1 - done) * next_v + reward``),
# when the episode step is greater than max episode step.
ignore_done=False,
# (float) Weight uniform initialization max range in the last output layer.
init_w=3e-3,
),
# collect_mode config
collect=dict(
# (int) How many training samples collected in one collection procedure.
n_sample=1,
# (int) Split episodes or trajectories into pieces with length `unroll_len`.
unroll_len=1,
# (bool) Whether to collect logit in `process_transition`.
# In some algorithm like guided cost learning, we need to use logit to train the reward model.
collector_logit=False,
),
eval=dict(), # for compability
other=dict(
replay_buffer=dict(
# (int) Maximum size of replay buffer. Usually, larger buffer size is good
# for SAC but cost more storage.
replay_buffer_size=1000000,
),
),
)
def default_model(self) -> Tuple[str, List[str]]:
"""
Overview:
Return this algorithm default neural network model setting for demonstration. ``__init__`` method will \
automatically call this method to get the default model setting and create model.
Returns:
- model_info (:obj:`Tuple[str, List[str]]`): The registered model name and model's import_names.
"""
if self._cfg.multi_agent:
return 'continuous_maqac', ['ding.model.template.maqac']
else:
return 'continuous_qac', ['ding.model.template.qac']
def _init_learn(self) -> None:
"""
Overview:
Initialize the learn mode of policy, including related attributes and modules. For SAC, it mainly \
contains three optimizers, algorithm-specific arguments such as gamma and twin_critic, main and target \
model. Especially, the ``auto_alpha`` mechanism for balancing max entropy target is also initialized here.
This method will be called in ``__init__`` method if ``learn`` field is in ``enable_field``.
.. note::
For the member variables that need to be saved and loaded, please refer to the ``_state_dict_learn`` \
and ``_load_state_dict_learn`` methods.
.. note::
For the member variables that need to be monitored, please refer to the ``_monitor_vars_learn`` method.
.. note::
If you want to set some spacial member variables in ``_init_learn`` method, you'd better name them \
with prefix ``_learn_`` to avoid conflict with other modes, such as ``self._learn_attr1``.
"""
self._priority = self._cfg.priority
self._priority_IS_weight = self._cfg.priority_IS_weight
self._twin_critic = self._cfg.model.twin_critic
# Weight Init for the last output layer
if hasattr(self._model, 'actor_head'): # keep compatibility
init_w = self._cfg.learn.init_w
self._model.actor_head[-1].mu.weight.data.uniform_(-init_w, init_w)
self._model.actor_head[-1].mu.bias.data.uniform_(-init_w, init_w)
self._model.actor_head[-1].log_sigma_layer.weight.data.uniform_(-init_w, init_w)
self._model.actor_head[-1].log_sigma_layer.bias.data.uniform_(-init_w, init_w)
self._optimizer_q = Adam(
self._model.critic.parameters(),
lr=self._cfg.learn.learning_rate_q,
)
self._optimizer_policy = Adam(
self._model.actor.parameters(),
lr=self._cfg.learn.learning_rate_policy,
)
# Algorithm-Specific Config
self._gamma = self._cfg.learn.discount_factor
if self._cfg.learn.auto_alpha:
if self._cfg.learn.target_entropy is None:
assert 'action_shape' in self._cfg.model, "SAC need network model with action_shape variable"
self._target_entropy = -np.prod(self._cfg.model.action_shape)
else:
self._target_entropy = self._cfg.learn.target_entropy
if self._cfg.learn.log_space:
self._log_alpha = torch.log(torch.FloatTensor([self._cfg.learn.alpha]))
self._log_alpha = self._log_alpha.to(self._device).requires_grad_()
self._alpha_optim = torch.optim.Adam([self._log_alpha], lr=self._cfg.learn.learning_rate_alpha)
assert self._log_alpha.shape == torch.Size([1]) and self._log_alpha.requires_grad
self._alpha = self._log_alpha.detach().exp()
self._auto_alpha = True
self._log_space = True
else:
self._alpha = torch.FloatTensor([self._cfg.learn.alpha]).to(self._device).requires_grad_()
self._alpha_optim = torch.optim.Adam([self._alpha], lr=self._cfg.learn.learning_rate_alpha)
self._auto_alpha = True
self._log_space = False
else:
self._alpha = torch.tensor(
[self._cfg.learn.alpha], requires_grad=False, device=self._device, dtype=torch.float32
)
self._auto_alpha = False
# Main and target models
self._target_model = copy.deepcopy(self._model)
self._target_model = model_wrap(
self._target_model,
wrapper_name='target',
update_type='momentum',
update_kwargs={'theta': self._cfg.learn.target_theta}
)
self._learn_model = model_wrap(self._model, wrapper_name='base')
self._learn_model.reset()
self._target_model.reset()
def _forward_learn(self, data: List[Dict[str, Any]]) -> Dict[str, Any]:
"""
Overview:
Policy forward function of learn mode (training policy and updating parameters). Forward means \
that the policy inputs some training batch data from the replay buffer and then returns the output \
result, including various training information such as loss, action, priority.
Arguments:
- data (:obj:`List[Dict[int, Any]]`): The input data used for policy forward, including a batch of \
training samples. For each element in list, the key of the dict is the name of data items and the \
value is the corresponding data. Usually, the value is torch.Tensor or np.ndarray or there dict/list \
combinations. In the ``_forward_learn`` method, data often need to first be stacked in the batch \
dimension by some utility functions such as ``default_preprocess_learn``. \
For SAC, each element in list is a dict containing at least the following keys: ``obs``, ``action``, \
``reward``, ``next_obs``, ``done``. Sometimes, it also contains other keys such as ``weight``.
Returns:
- info_dict (:obj:`Dict[str, Any]`): The information dict that indicated training result, which will be \
recorded in text log and tensorboard, values must be python scalar or a list of scalars. For the \
detailed definition of the dict, refer to the code of ``_monitor_vars_learn`` method.
.. note::
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
For the data type that not supported, the main reason is that the corresponding model does not support it. \
You can implement you own model rather than use the default model. For more information, please raise an \
issue in GitHub repo and we will continue to follow up.
.. note::
For more detailed examples, please refer to our unittest for SACPolicy: ``ding.policy.tests.test_sac``.
"""
loss_dict = {}
data = default_preprocess_learn(
data,
use_priority=self._priority,
use_priority_IS_weight=self._cfg.priority_IS_weight,
ignore_done=self._cfg.learn.ignore_done,
use_nstep=False
)
if self._cuda:
data = to_device(data, self._device)
self._learn_model.train()
self._target_model.train()
obs = data['obs']
next_obs = data['next_obs']
reward = data['reward']
done = data['done']
# 1. predict q value
q_value = self._learn_model.forward(data, mode='compute_critic')['q_value']
# 2. predict target value
with torch.no_grad():
(mu, sigma) = self._learn_model.forward(next_obs, mode='compute_actor')['logit']
dist = Independent(Normal(mu, sigma), 1)
pred = dist.rsample()
next_action = torch.tanh(pred)
y = 1 - next_action.pow(2) + 1e-6
# keep dimension for loss computation (usually for action space is 1 env. e.g. pendulum)
next_log_prob = dist.log_prob(pred).unsqueeze(-1)
next_log_prob = next_log_prob - torch.log(y).sum(-1, keepdim=True)
next_data = {'obs': next_obs, 'action': next_action}
target_q_value = self._target_model.forward(next_data, mode='compute_critic')['q_value']
# the value of a policy according to the maximum entropy objective
if self._twin_critic:
# find min one as target q value
target_q_value = torch.min(target_q_value[0],
target_q_value[1]) - self._alpha * next_log_prob.squeeze(-1)
else:
target_q_value = target_q_value - self._alpha * next_log_prob.squeeze(-1)
# 3. compute q loss
if self._twin_critic:
q_data0 = v_1step_td_data(q_value[0], target_q_value, reward, done, data['weight'])
loss_dict['critic_loss'], td_error_per_sample0 = v_1step_td_error(q_data0, self._gamma)
q_data1 = v_1step_td_data(q_value[1], target_q_value, reward, done, data['weight'])
loss_dict['twin_critic_loss'], td_error_per_sample1 = v_1step_td_error(q_data1, self._gamma)
td_error_per_sample = (td_error_per_sample0 + td_error_per_sample1) / 2
else:
q_data = v_1step_td_data(q_value, target_q_value, reward, done, data['weight'])
loss_dict['critic_loss'], td_error_per_sample = v_1step_td_error(q_data, self._gamma)
# 4. update q network
self._optimizer_q.zero_grad()
if self._twin_critic:
(loss_dict['critic_loss'] + loss_dict['twin_critic_loss']).backward()
else:
loss_dict['critic_loss'].backward()
self._optimizer_q.step()
# 5. evaluate to get action distribution
(mu, sigma) = self._learn_model.forward(data['obs'], mode='compute_actor')['logit']
dist = Independent(Normal(mu, sigma), 1)
pred = dist.rsample()
action = torch.tanh(pred)
y = 1 - action.pow(2) + 1e-6
# keep dimension for loss computation (usually for action space is 1 env. e.g. pendulum)
log_prob = dist.log_prob(pred).unsqueeze(-1)
log_prob = log_prob - torch.log(y).sum(-1, keepdim=True)
eval_data = {'obs': obs, 'action': action}
new_q_value = self._learn_model.forward(eval_data, mode='compute_critic')['q_value']
if self._twin_critic:
new_q_value = torch.min(new_q_value[0], new_q_value[1])
# 6. compute policy loss
policy_loss = (self._alpha * log_prob - new_q_value.unsqueeze(-1)).mean()
loss_dict['policy_loss'] = policy_loss
# 7. update policy network
self._optimizer_policy.zero_grad()
loss_dict['policy_loss'].backward()
self._optimizer_policy.step()
# 8. compute alpha loss
if self._auto_alpha:
if self._log_space:
log_prob = log_prob + self._target_entropy
loss_dict['alpha_loss'] = -(self._log_alpha * log_prob.detach()).mean()
self._alpha_optim.zero_grad()
loss_dict['alpha_loss'].backward()
self._alpha_optim.step()
self._alpha = self._log_alpha.detach().exp()
else:
log_prob = log_prob + self._target_entropy
loss_dict['alpha_loss'] = -(self._alpha * log_prob.detach()).mean()
self._alpha_optim.zero_grad()
loss_dict['alpha_loss'].backward()
self._alpha_optim.step()
self._alpha = max(0, self._alpha)
loss_dict['total_loss'] = sum(loss_dict.values())
# target update
self._target_model.update(self._learn_model.state_dict())
return {
'cur_lr_q': self._optimizer_q.defaults['lr'],
'cur_lr_p': self._optimizer_policy.defaults['lr'],
'priority': td_error_per_sample.abs().tolist(),
'td_error': td_error_per_sample.detach().mean().item(),
'alpha': self._alpha.item(),
'target_q_value': target_q_value.detach().mean().item(),
'transformed_log_prob': log_prob.mean().item(),
**loss_dict
}
def _state_dict_learn(self) -> Dict[str, Any]:
"""
Overview:
Return the state_dict of learn mode, usually including model, target_model and optimizers.
Returns:
- state_dict (:obj:`Dict[str, Any]`): The dict of current policy learn state, for saving and restoring.
"""
ret = {
'model': self._learn_model.state_dict(),
'target_model': self._target_model.state_dict(),
'optimizer_q': self._optimizer_q.state_dict(),
'optimizer_policy': self._optimizer_policy.state_dict(),
}
if self._auto_alpha:
ret.update({'optimizer_alpha': self._alpha_optim.state_dict()})
return ret
def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None:
"""
Overview:
Load the state_dict variable into policy learn mode.
Arguments:
- state_dict (:obj:`Dict[str, Any]`): The dict of policy learn state saved before.
.. tip::
If you want to only load some parts of model, you can simply set the ``strict`` argument in \
load_state_dict to ``False``, or refer to ``ding.torch_utils.checkpoint_helper`` for more \
complicated operation.
"""
self._learn_model.load_state_dict(state_dict['model'])
self._target_model.load_state_dict(state_dict['target_model'])
self._optimizer_q.load_state_dict(state_dict['optimizer_q'])
self._optimizer_policy.load_state_dict(state_dict['optimizer_policy'])
if self._auto_alpha:
self._alpha_optim.load_state_dict(state_dict['optimizer_alpha'])
def _init_collect(self) -> None:
"""
Overview:
Initialize the collect mode of policy, including related attributes and modules. For SAC, it contains the \
collect_model other algorithm-specific arguments such as unroll_len. \
This method will be called in ``__init__`` method if ``collect`` field is in ``enable_field``.
.. note::
If you want to set some spacial member variables in ``_init_collect`` method, you'd better name them \
with prefix ``_collect_`` to avoid conflict with other modes, such as ``self._collect_attr1``.
"""
self._unroll_len = self._cfg.collect.unroll_len
self._collect_model = model_wrap(self._model, wrapper_name='base')
self._collect_model.reset()
def _forward_collect(self, data: Dict[int, Any], **kwargs) -> Dict[int, Any]:
"""
Overview:
Policy forward function of collect mode (collecting training data by interacting with envs). Forward means \
that the policy gets some necessary data (mainly observation) from the envs and then returns the output \
data, such as the action to interact with the envs.
Arguments:
- data (:obj:`Dict[int, Any]`): The input data used for policy forward, including at least the obs. The \
key of the dict is environment id and the value is the corresponding data of the env.
Returns:
- output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action and \
other necessary data for learn mode defined in ``self._process_transition`` method. The key of the \
dict is the same as the input data, i.e. environment id.
.. note::
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
For the data type that not supported, the main reason is that the corresponding model does not support it. \
You can implement you own model rather than use the default model. For more information, please raise an \
issue in GitHub repo and we will continue to follow up.
.. note::
``logit`` in SAC means the mu and sigma of Gaussioan distribution. Here we use this name for consistency.
.. note::
For more detailed examples, please refer to our unittest for SACPolicy: ``ding.policy.tests.test_sac``.
"""
data_id = list(data.keys())
data = default_collate(list(data.values()))
if self._cuda:
data = to_device(data, self._device)
self._collect_model.eval()
with torch.no_grad():
(mu, sigma) = self._collect_model.forward(data, mode='compute_actor')['logit']
dist = Independent(Normal(mu, sigma), 1)
action = torch.tanh(dist.rsample())
output = {'logit': (mu, sigma), 'action': action}
if self._cuda:
output = to_device(output, 'cpu')
output = default_decollate(output)
return {i: d for i, d in zip(data_id, output)}
def _process_transition(self, obs: torch.Tensor, policy_output: Dict[str, torch.Tensor],
timestep: namedtuple) -> Dict[str, torch.Tensor]:
"""
Overview:
Process and pack one timestep transition data into a dict, which can be directly used for training and \
saved in replay buffer. For continuous SAC, it contains obs, next_obs, action, reward, done. The logit \
will be also added when ``collector_logit`` is True.
Arguments:
- obs (:obj:`torch.Tensor`): The env observation of current timestep, such as stacked 2D image in Atari.
- policy_output (:obj:`Dict[str, torch.Tensor]`): The output of the policy network with the observation \
as input. For continuous SAC, it contains the action and the logit (mu and sigma) of the action.
- timestep (:obj:`namedtuple`): The execution result namedtuple returned by the environment step method, \
except all the elements have been transformed into tensor data. Usually, it contains the next obs, \
reward, done, info, etc.
Returns:
- transition (:obj:`Dict[str, torch.Tensor]`): The processed transition data of the current timestep.
"""
if self._cfg.collect.collector_logit:
transition = {
'obs': obs,
'next_obs': timestep.obs,
'logit': policy_output['logit'],
'action': policy_output['action'],
'reward': timestep.reward,
'done': timestep.done,
}
else:
transition = {
'obs': obs,
'next_obs': timestep.obs,
'action': policy_output['action'],
'reward': timestep.reward,
'done': timestep.done,
}
return transition
def _get_train_sample(self, transitions: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""
Overview:
For a given trajectory (transitions, a list of transition) data, process it into a list of sample that \
can be used for training directly. In continuous SAC, a train sample is a processed transition \
(unroll_len=1).
Arguments:
- transitions (:obj:`List[Dict[str, Any]`): The trajectory data (a list of transition), each element is \
the same format as the return value of ``self._process_transition`` method.
Returns:
- samples (:obj:`List[Dict[str, Any]]`): The processed train samples, each element is the similar format \
as input transitions, but may contain more data for training.
"""
return get_train_sample(transitions, self._unroll_len)
def _init_eval(self) -> None:
"""
Overview:
Initialize the eval mode of policy, including related attributes and modules. For SAC, it contains the \
eval model, which is equipped with ``base`` model wrapper to ensure compability.
This method will be called in ``__init__`` method if ``eval`` field is in ``enable_field``.
.. note::
If you want to set some spacial member variables in ``_init_eval`` method, you'd better name them \
with prefix ``_eval_`` to avoid conflict with other modes, such as ``self._eval_attr1``.
"""
self._eval_model = model_wrap(self._model, wrapper_name='base')
self._eval_model.reset()
def _forward_eval(self, data: Dict[int, Any]) -> Dict[int, Any]:
"""
Overview:
Policy forward function of eval mode (evaluation policy performance by interacting with envs). Forward \
means that the policy gets some necessary data (mainly observation) from the envs and then returns the \
action to interact with the envs.
Arguments:
- data (:obj:`Dict[int, Any]`): The input data used for policy forward, including at least the obs. The \
key of the dict is environment id and the value is the corresponding data of the env.
Returns:
- output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action. The \
key of the dict is the same as the input data, i.e. environment id.
.. note::
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
For the data type that not supported, the main reason is that the corresponding model does not support it. \
You can implement you own model rather than use the default model. For more information, please raise an \
issue in GitHub repo and we will continue to follow up.
.. note::
``logit`` in SAC means the mu and sigma of Gaussioan distribution. Here we use this name for consistency.
.. note::
For more detailed examples, please refer to our unittest for SACPolicy: ``ding.policy.tests.test_sac``.
"""
data_id = list(data.keys())
data = default_collate(list(data.values()))
if self._cuda:
data = to_device(data, self._device)
self._eval_model.eval()
with torch.no_grad():
(mu, sigma) = self._eval_model.forward(data, mode='compute_actor')['logit']
action = torch.tanh(mu) # deterministic_eval
output = {'action': action}
if self._cuda:
output = to_device(output, 'cpu')
output = default_decollate(output)
return {i: d for i, d in zip(data_id, output)}
def _monitor_vars_learn(self) -> List[str]:
"""
Overview:
Return the necessary keys for logging the return dict of ``self._forward_learn``. The logger module, such \
as text logger, tensorboard logger, will use these keys to save the corresponding data.
Returns:
- necessary_keys (:obj:`List[str]`): The list of the necessary keys to be logged.
"""
twin_critic = ['twin_critic_loss'] if self._twin_critic else []
alpha_loss = ['alpha_loss'] if self._auto_alpha else []
return [
'value_loss'
'alpha_loss',
'policy_loss',
'critic_loss',
'cur_lr_q',
'cur_lr_p',
'target_q_value',
'alpha',
'td_error',
'transformed_log_prob',
] + twin_critic + alpha_loss
@POLICY_REGISTRY.register('sqil_sac')
class SQILSACPolicy(SACPolicy):
"""
Overview:
Policy class of continuous SAC algorithm with SQIL extension.
SAC paper link: https://arxiv.org/pdf/1801.01290.pdf
SQIL paper link: https://arxiv.org/abs/1905.11108
"""
def _init_learn(self) -> None:
"""
Overview:
Initialize the learn mode of policy, including related attributes and modules. For SAC, it mainly \
contains three optimizers, algorithm-specific arguments such as gamma and twin_critic, main and target \
model. Especially, the ``auto_alpha`` mechanism for balancing max entropy target is also initialized here.
This method will be called in ``__init__`` method if ``learn`` field is in ``enable_field``.
.. note::
For the member variables that need to be saved and loaded, please refer to the ``_state_dict_learn`` \
and ``_load_state_dict_learn`` methods.
.. note::
For the member variables that need to be monitored, please refer to the ``_monitor_vars_learn`` method.
.. note::
If you want to set some spacial member variables in ``_init_learn`` method, you'd better name them \
with prefix ``_learn_`` to avoid conflict with other modes, such as ``self._learn_attr1``.
"""
self._priority = self._cfg.priority
self._priority_IS_weight = self._cfg.priority_IS_weight
self._twin_critic = self._cfg.model.twin_critic
# Weight Init for the last output layer
init_w = self._cfg.learn.init_w
self._model.actor_head[-1].mu.weight.data.uniform_(-init_w, init_w)
self._model.actor_head[-1].mu.bias.data.uniform_(-init_w, init_w)
self._model.actor_head[-1].log_sigma_layer.weight.data.uniform_(-init_w, init_w)
self._model.actor_head[-1].log_sigma_layer.bias.data.uniform_(-init_w, init_w)
self._optimizer_q = Adam(
self._model.critic.parameters(),
lr=self._cfg.learn.learning_rate_q,
)
self._optimizer_policy = Adam(
self._model.actor.parameters(),
lr=self._cfg.learn.learning_rate_policy,
)
# Algorithm-Specific Config
self._gamma = self._cfg.learn.discount_factor
if self._cfg.learn.auto_alpha:
if self._cfg.learn.target_entropy is None:
assert 'action_shape' in self._cfg.model, "SQILSACPolicy need network model with action_shape variable"
self._target_entropy = -np.prod(self._cfg.model.action_shape)
else:
self._target_entropy = self._cfg.learn.target_entropy
if self._cfg.learn.log_space:
self._log_alpha = torch.log(torch.FloatTensor([self._cfg.learn.alpha]))
self._log_alpha = self._log_alpha.to(self._device).requires_grad_()
self._alpha_optim = torch.optim.Adam([self._log_alpha], lr=self._cfg.learn.learning_rate_alpha)
assert self._log_alpha.shape == torch.Size([1]) and self._log_alpha.requires_grad
self._alpha = self._log_alpha.detach().exp()
self._auto_alpha = True
self._log_space = True
else:
self._alpha = torch.FloatTensor([self._cfg.learn.alpha]).to(self._device).requires_grad_()
self._alpha_optim = torch.optim.Adam([self._alpha], lr=self._cfg.learn.learning_rate_alpha)
self._auto_alpha = True
self._log_space = False
else:
self._alpha = torch.tensor(
[self._cfg.learn.alpha], requires_grad=False, device=self._device, dtype=torch.float32
)
self._auto_alpha = False
# Main and target models
self._target_model = copy.deepcopy(self._model)
self._target_model = model_wrap(
self._target_model,
wrapper_name='target',
update_type='momentum',
update_kwargs={'theta': self._cfg.learn.target_theta}
)
self._learn_model = model_wrap(self._model, wrapper_name='base')
self._learn_model.reset()
self._target_model.reset()
# monitor cossimilarity and entropy switch
self._monitor_cos = True
self._monitor_entropy = True
def _forward_learn(self, data: List[Dict[str, Any]]) -> Dict[str, Any]:
"""
Overview:
Policy forward function of learn mode (training policy and updating parameters). Forward means \
that the policy inputs some training batch data from the replay buffer and then returns the output \
result, including various training information such as loss, action, priority.
Arguments:
- data (:obj:`List[Dict[int, Any]]`): The input data used for policy forward, including a batch of \
training samples. For each element in list, the key of the dict is the name of data items and the \
value is the corresponding data. Usually, the value is torch.Tensor or np.ndarray or there dict/list \
combinations. In the ``_forward_learn`` method, data often need to first be stacked in the batch \
dimension by some utility functions such as ``default_preprocess_learn``. \
For SAC, each element in list is a dict containing at least the following keys: ``obs``, ``action``, \
``reward``, ``next_obs``, ``done``. Sometimes, it also contains other keys such as ``weight``.
Returns:
- info_dict (:obj:`Dict[str, Any]`): The information dict that indicated training result, which will be \
recorded in text log and tensorboard, values must be python scalar or a list of scalars. For the \
detailed definition of the dict, refer to the code of ``_monitor_vars_learn`` method.
.. note::
For SQIL + SAC, input data is composed of two parts with the same size: agent data and expert data. \
Both of them are relabelled with new reward according to SQIL algorithm.
.. note::
The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
For the data type that not supported, the main reason is that the corresponding model does not support it. \
You can implement you own model rather than use the default model. For more information, please raise an \
issue in GitHub repo and we will continue to follow up.
.. note::
For more detailed examples, please refer to our unittest for SACPolicy: ``ding.policy.tests.test_sac``.
"""
loss_dict = {}
if self._monitor_cos:
agent_data = default_preprocess_learn(
data[0:len(data) // 2],
use_priority=self._priority,
use_priority_IS_weight=self._cfg.priority_IS_weight,
ignore_done=self._cfg.learn.ignore_done,
use_nstep=False
)
expert_data = default_preprocess_learn(
data[len(data) // 2:],
use_priority=self._priority,
use_priority_IS_weight=self._cfg.priority_IS_weight,
ignore_done=self._cfg.learn.ignore_done,
use_nstep=False
)
if self._cuda:
agent_data = to_device(agent_data, self._device)
expert_data = to_device(expert_data, self._device)
data = default_preprocess_learn(
data,
use_priority=self._priority,
use_priority_IS_weight=self._cfg.priority_IS_weight,
ignore_done=self._cfg.learn.ignore_done,
use_nstep=False
)
if self._cuda:
data = to_device(data, self._device)
self._learn_model.train()
self._target_model.train()
obs = data['obs']
next_obs = data['next_obs']
reward = data['reward']
done = data['done']
# 1. predict q value
q_value = self._learn_model.forward(data, mode='compute_critic')['q_value']
# 2. predict target value
with torch.no_grad():
(mu, sigma) = self._learn_model.forward(next_obs, mode='compute_actor')['logit']
dist = Independent(Normal(mu, sigma), 1)
pred = dist.rsample()
next_action = torch.tanh(pred)
y = 1 - next_action.pow(2) + 1e-6
# keep dimension for loss computation (usually for action space is 1 env. e.g. pendulum)
next_log_prob = dist.log_prob(pred).unsqueeze(-1)
next_log_prob = next_log_prob - torch.log(y).sum(-1, keepdim=True)
next_data = {'obs': next_obs, 'action': next_action}
target_q_value = self._target_model.forward(next_data, mode='compute_critic')['q_value']
# the value of a policy according to the maximum entropy objective
if self._twin_critic:
# find min one as target q value
target_q_value = torch.min(target_q_value[0],
target_q_value[1]) - self._alpha * next_log_prob.squeeze(-1)
else:
target_q_value = target_q_value - self._alpha * next_log_prob.squeeze(-1)
# 3. compute q loss
if self._twin_critic:
q_data0 = v_1step_td_data(q_value[0], target_q_value, reward, done, data['weight'])
loss_dict['critic_loss'], td_error_per_sample0 = v_1step_td_error(q_data0, self._gamma)
q_data1 = v_1step_td_data(q_value[1], target_q_value, reward, done, data['weight'])
loss_dict['twin_critic_loss'], td_error_per_sample1 = v_1step_td_error(q_data1, self._gamma)
td_error_per_sample = (td_error_per_sample0 + td_error_per_sample1) / 2
else:
q_data = v_1step_td_data(q_value, target_q_value, reward, done, data['weight'])
loss_dict['critic_loss'], td_error_per_sample = v_1step_td_error(q_data, self._gamma)
# 4. update q network
self._optimizer_q.zero_grad()
if self._twin_critic:
(loss_dict['critic_loss'] + loss_dict['twin_critic_loss']).backward()
else:
loss_dict['critic_loss'].backward()
self._optimizer_q.step()
# 5. evaluate to get action distribution
if self._monitor_cos:
# agent
(mu, sigma) = self._learn_model.forward(agent_data['obs'], mode='compute_actor')['logit']
dist = Independent(Normal(mu, sigma), 1)
pred = dist.rsample()
action = torch.tanh(pred)
y = 1 - action.pow(2) + 1e-6
# keep dimension for loss computation (usually for action space is 1 env. e.g. pendulum)
agent_log_prob = dist.log_prob(pred).unsqueeze(-1)
agent_log_prob = agent_log_prob - torch.log(y).sum(-1, keepdim=True)
eval_data = {'obs': agent_data['obs'], 'action': action}
agent_new_q_value = self._learn_model.forward(eval_data, mode='compute_critic')['q_value']
if self._twin_critic:
agent_new_q_value = torch.min(agent_new_q_value[0], agent_new_q_value[1])
# expert
(mu, sigma) = self._learn_model.forward(expert_data['obs'], mode='compute_actor')['logit']
dist = Independent(Normal(mu, sigma), 1)
pred = dist.rsample()
action = torch.tanh(pred)
y = 1 - action.pow(2) + 1e-6
# keep dimension for loss computation (usually for action space is 1 env. e.g. pendulum)
expert_log_prob = dist.log_prob(pred).unsqueeze(-1)
expert_log_prob = expert_log_prob - torch.log(y).sum(-1, keepdim=True)
eval_data = {'obs': expert_data['obs'], 'action': action}
expert_new_q_value = self._learn_model.forward(eval_data, mode='compute_critic')['q_value']
if self._twin_critic:
expert_new_q_value = torch.min(expert_new_q_value[0], expert_new_q_value[1])
(mu, sigma) = self._learn_model.forward(data['obs'], mode='compute_actor')['logit']
dist = Independent(Normal(mu, sigma), 1)
# for monitor the entropy of policy
if self._monitor_entropy:
dist_entropy = dist.entropy()
entropy = dist_entropy.mean()
pred = dist.rsample()
action = torch.tanh(pred)
y = 1 - action.pow(2) + 1e-6
# keep dimension for loss computation (usually for action space is 1 env. e.g. pendulum)
log_prob = dist.log_prob(pred).unsqueeze(-1)
log_prob = log_prob - torch.log(y).sum(-1, keepdim=True)
eval_data = {'obs': obs, 'action': action}
new_q_value = self._learn_model.forward(eval_data, mode='compute_critic')['q_value']
if self._twin_critic:
new_q_value = torch.min(new_q_value[0], new_q_value[1])
# 6. compute policy loss
policy_loss = (self._alpha * log_prob - new_q_value.unsqueeze(-1)).mean()
loss_dict['policy_loss'] = policy_loss
# 7. update policy network
if self._monitor_cos:
agent_policy_loss = (self._alpha * agent_log_prob - agent_new_q_value.unsqueeze(-1)).mean()
expert_policy_loss = (self._alpha * expert_log_prob - expert_new_q_value.unsqueeze(-1)).mean()
loss_dict['agent_policy_loss'] = agent_policy_loss
loss_dict['expert_policy_loss'] = expert_policy_loss
self._optimizer_policy.zero_grad()
loss_dict['agent_policy_loss'].backward()
agent_grad = (list(list(self._learn_model.actor.children())[-1].children())[-1].weight.grad).mean()
self._optimizer_policy.zero_grad()
loss_dict['expert_policy_loss'].backward()
expert_grad = (list(list(self._learn_model.actor.children())[-1].children())[-1].weight.grad).mean()
cos = nn.CosineSimilarity(dim=0)
cos_similarity = cos(agent_grad, expert_grad)
self._optimizer_policy.zero_grad()
loss_dict['policy_loss'].backward()
self._optimizer_policy.step()
# 8. compute alpha loss
if self._auto_alpha:
if self._log_space:
log_prob = log_prob + self._target_entropy
loss_dict['alpha_loss'] = -(self._log_alpha * log_prob.detach()).mean()
self._alpha_optim.zero_grad()
loss_dict['alpha_loss'].backward()
self._alpha_optim.step()
self._alpha = self._log_alpha.detach().exp()
else:
log_prob = log_prob + self._target_entropy
loss_dict['alpha_loss'] = -(self._alpha * log_prob.detach()).mean()
self._alpha_optim.zero_grad()
loss_dict['alpha_loss'].backward()
self._alpha_optim.step()
self._alpha = max(0, self._alpha)
loss_dict['total_loss'] = sum(loss_dict.values())
# target update
self._target_model.update(self._learn_model.state_dict())
var_monitor = {
'cur_lr_q': self._optimizer_q.defaults['lr'],
'cur_lr_p': self._optimizer_policy.defaults['lr'],
'priority': td_error_per_sample.abs().tolist(),
'td_error': td_error_per_sample.detach().mean().item(),
'agent_td_error': td_error_per_sample.detach().chunk(2, dim=0)[0].mean().item(),
'expert_td_error': td_error_per_sample.detach().chunk(2, dim=0)[1].mean().item(),
'alpha': self._alpha.item(),
'target_q_value': target_q_value.detach().mean().item(),
'mu': mu.detach().mean().item(),
'sigma': sigma.detach().mean().item(),
'q_value0': new_q_value[0].detach().mean().item(),
'q_value1': new_q_value[1].detach().mean().item(),
**loss_dict,
}
if self._monitor_cos:
var_monitor['cos_similarity'] = cos_similarity.item()
if self._monitor_entropy:
var_monitor['entropy'] = entropy.item()
return var_monitor
def _monitor_vars_learn(self) -> List[str]:
"""
Overview:
Return the necessary keys for logging the return dict of ``self._forward_learn``. The logger module, such \
as text logger, tensorboard logger, will use these keys to save the corresponding data.
Returns:
- necessary_keys (:obj:`List[str]`): The list of the necessary keys to be logged.
"""
twin_critic = ['twin_critic_loss'] if self._twin_critic else []
alpha_loss = ['alpha_loss'] if self._auto_alpha else []
cos_similarity = ['cos_similarity'] if self._monitor_cos else []
entropy = ['entropy'] if self._monitor_entropy else []
return [
'value_loss'
'alpha_loss',
'policy_loss',
'critic_loss',
'cur_lr_q',
'cur_lr_p',
'target_q_value',
'alpha',
'td_error',
'agent_td_error',
'expert_td_error',
'mu',
'sigma',
'q_value0',
'q_value1',
] + twin_critic + alpha_loss + cos_similarity + entropy
|