File size: 7,877 Bytes
3dfe8fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import numpy as np
import gym
from typing import Any, Union, List, Optional
import copy
import slimevolleygym
from gym.envs.registration import registry
from ding.envs import BaseEnv, BaseEnvTimestep
from ding.utils import ENV_REGISTRY
from ding.torch_utils import to_ndarray


@ENV_REGISTRY.register('slime_volley')
class SlimeVolleyEnv(BaseEnv):

    def __init__(self, cfg) -> None:
        self._cfg = cfg
        self._init_flag = False
        self._replay_path = None
        # agent_vs_bot env is single-agent env. obs, action, done, info are all single.
        # agent_vs_agent env is double-agent env, obs, action, info are double, done is still single.
        self._agent_vs_agent = cfg.agent_vs_agent

    def seed(self, seed: int, dynamic_seed: bool = True) -> None:
        self._seed = seed
        self._dynamic_seed = dynamic_seed
        np.random.seed(self._seed)

    def close(self) -> None:
        if self._init_flag:
            self._env.close()
        self._init_flag = False

    def step(self, action: Union[np.ndarray, List[np.ndarray]]) -> BaseEnvTimestep:
        if self._agent_vs_agent:
            assert isinstance(action, List) and all([isinstance(e, np.ndarray) for e in action])
            action1, action2 = action[0], action[1]
        else:
            assert isinstance(action, np.ndarray)
            action1, action2 = action, None
        assert isinstance(action1, np.ndarray), type(action1)
        assert action2 is None or isinstance(action1, np.ndarray), type(action2)
        if action1.shape == (1, ):
            action1 = action1.squeeze()  # 0-dim array
        if action2 is not None and action2.shape == (1, ):
            action2 = action2.squeeze()  # 0-dim array
        action1 = SlimeVolleyEnv._process_action(action1)
        action2 = SlimeVolleyEnv._process_action(action2)
        # gym version >= 0.22.0 only support action in one variable,
        # So we have to put two actions into one tuple.
        obs1, rew, done, info = self._env.step((action1, action2))
        obs1 = to_ndarray(obs1).astype(np.float32)
        self._eval_episode_return += rew
        # info ('ale.lives', 'ale.otherLives', 'otherObs', 'state', 'otherState')
        if self._agent_vs_agent:
            info = [
                {
                    'ale.lives': info['ale.lives'],
                    'state': info['state']
                }, {
                    'ale.lives': info['ale.otherLives'],
                    'state': info['otherState'],
                    'obs': info['otherObs']
                }
            ]
            if done:
                info[0]['eval_episode_return'] = self._eval_episode_return
                info[1]['eval_episode_return'] = -self._eval_episode_return
                info[0]['result'] = self.get_episode_result(self._eval_episode_return)
                info[1]['result'] = self.get_episode_result(-self._eval_episode_return)
        else:
            if done:
                info['eval_episode_return'] = self._eval_episode_return
                info['result'] = self.get_episode_result(self._eval_episode_return)
        reward = to_ndarray([rew]).astype(np.float32)
        if self._agent_vs_agent:
            obs2 = info[1]['obs']
            obs2 = to_ndarray(obs2).astype(np.float32)
            observations = np.stack([obs1, obs2], axis=0)
            rewards = to_ndarray([rew, -rew]).astype(np.float32)
            rewards = rewards[..., np.newaxis]
            return BaseEnvTimestep(observations, rewards, done, info)
        else:
            return BaseEnvTimestep(obs1, reward, done, info)

    def get_episode_result(self, eval_episode_return: float):
        if eval_episode_return > 0:  # due to using 5 games (lives) in this env, the eval_episode_return can't be zero.
            return "wins"
        else:
            return "losses"

    def reset(self):
        if not self._init_flag:
            self._env = gym.make(self._cfg.env_id)

            if self._replay_path is not None:
                if gym.version.VERSION > '0.22.0':
                    # Gym removed classic control rendering to support using pygame instead.
                    # And thus, slime_volleyball currently do not support rendering.
                    self._env.metadata.update({'render_modes': ["human"]})
                else:
                    self._env.metadata.update({'render.modes': ["human"]})
                    self._env = gym.wrappers.RecordVideo(
                        self._env,
                        video_folder=self._replay_path,
                        episode_trigger=lambda episode_id: True,
                        name_prefix='rl-video-{}'.format(id(self))
                    )
                    self._env.start_video_recorder()

            ori_shape = self._env.observation_space.shape
            self._observation_space = gym.spaces.Box(
                low=float("-inf"),
                high=float("inf"),
                shape=(len(self.agents), ) + ori_shape if len(self.agents) >= 2 else ori_shape,
                dtype=np.float32
            )
            self._action_space = gym.spaces.Discrete(6)
            self._reward_space = gym.spaces.Box(low=-5, high=5, shape=(1, ), dtype=np.float32)
            self._init_flag = True
        if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed:
            np_seed = 100 * np.random.randint(1, 1000)
            self._env.seed(self._seed + np_seed)
        elif hasattr(self, '_seed'):
            self._env.seed(self._seed)
        self._eval_episode_return = 0
        obs = self._env.reset()
        obs = to_ndarray(obs).astype(np.float32)
        if self._agent_vs_agent:
            obs = np.stack([obs, obs], axis=0)
            return obs
        else:
            return obs

    @property
    def observation_space(self) -> gym.spaces.Space:
        return self._observation_space

    @property
    def action_space(self) -> gym.spaces.Space:
        return self._action_space

    @property
    def reward_space(self) -> gym.spaces.Space:
        return self._reward_space

    @property
    def agents(self) -> List[str]:
        if self._agent_vs_agent:
            return ['home', 'away']
        else:
            return ['home']

    def random_action(self) -> np.ndarray:
        high = self.action_space.n
        if self._agent_vs_agent:
            return [np.random.randint(0, high, size=(1, )) for _ in range(2)]
        else:
            return np.random.randint(0, high, size=(1, ))

    def __repr__(self):
        return "DI-engine Slime Volley Env"

    def enable_save_replay(self, replay_path: Optional[str] = None) -> None:
        if replay_path is None:
            replay_path = './video'
        self._replay_path = replay_path

    @staticmethod
    def _process_action(action: np.ndarray, _type: str = "binary") -> np.ndarray:
        if action is None:
            return None
        action = action.item()
        # Env receives action in [0, 5] (int type). Can translater into:
        # 1) "binary" type: np.array([0, 1, 0])
        # 2) "atari" type: NOOP, LEFT, UPLEFT, UP, UPRIGHT, RIGHT
        to_atari_action = {
            0: 0,  # NOOP
            1: 4,  # LEFT
            2: 7,  # UPLEFT
            3: 2,  # UP
            4: 6,  # UPRIGHT
            5: 3,  # RIGHT
        }
        to_binary_action = {
            0: [0, 0, 0],  # NOOP
            1: [1, 0, 0],  # LEFT (forward)
            2: [1, 0, 1],  # UPLEFT (forward jump)
            3: [0, 0, 1],  # UP (jump)
            4: [0, 1, 1],  # UPRIGHT (backward jump)
            5: [0, 1, 0],  # RIGHT (backward)
        }
        if _type == "binary":
            return to_ndarray(to_binary_action[action])
        elif _type == "atari":
            return to_atari_action[action]
        else:
            raise NotImplementedError