File size: 11,098 Bytes
3dfe8fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import time

import numpy as np
import pytest
from easydict import EasyDict

from connect4_env import Connect4Env
from zoo.board_games.mcts_bot import MCTSBot


@pytest.mark.unittest
class TestConnect4Bot():
    """
    Overview:
        This class is used to test the Connect4 Bots.
    """

    def setup(self) -> None:
        """
        Overview:
            This method is responsible for setting up the initial configurations required for the game environment.
            It creates an instance of the Connect4Env class and Connect4RuleBot class.
        """
        self.cfg = EasyDict(
            battle_mode='self_play_mode',
            battle_mode_in_simulation_env='self_play_mode',
            channel_last=True,
            scale=True,
            agent_vs_human=False,
            prob_random_agent=0,
            prob_expert_agent=0,
            bot_action_type='rule',
            screen_scaling=9,
            render_mode='image_savefile_mode',
            prob_random_action_in_bot=0,
        )

    def test_mcts_bot_vs_rule_bot(self, num_simulations: int = 200) -> None:
        """
        Overview:
            A tictactoe game between mcts_bot and rule_bot, where rule_bot take the first move.
        Arguments:
            - num_simulations (:obj:`int`): The number of the simulations required to find the best move.
        """
        # List to record the time required for each decision round and the winner.
        mcts_bot_time_list = []
        bot_action_time_list = []
        winner = []

        # Repeat the game for 10 rounds.
        for i in range(10):
            print('-' * 10 + str(i) + '-' * 10)
            # Initialize the game, where there are two players: player 1 and player 2.
            env = Connect4Env(EasyDict(self.cfg))
            # Reset the environment, set the board to a clean board and the  start player to be player 1.
            env.reset(replay_name_suffix=f'test{i}')
            state = env.board
            self.cfg_temp = EasyDict(self.cfg.copy())
            self.cfg_temp.save_replay = False
            env_mcts = Connect4Env(EasyDict(self.cfg_temp))
            player = MCTSBot(env_mcts, 'a', num_simulations)  # player_index = 0, player = 1
            # Set player 1 to move first.
            player_index = 0
            while not env.get_done_reward()[0]:
                """
                Overview:
                    The two players take turns to make moves, and the time required for each decision is recorded.
                """
                # Set rule_bot to be player 1.
                if player_index == 0:
                    t1 = time.time()
                    # action = env.bot_action()
                    action = player.get_actions(state, player_index=player_index)
                    t2 = time.time()
                    # print("The time difference is :", t2-t1)
                    mcts_bot_time_list.append(t2 - t1)
                    player_index = 1
                # Set mcts_bot to be player 2.
                else:
                    t1 = time.time()
                    action = env.bot_action()
                    # action = player.get_actions(state, player_index=player_index)
                    t2 = time.time()
                    # print("The time difference is :", t2-t1)
                    bot_action_time_list.append(t2 - t1)
                    player_index = 0
                env.step(action)
                state = env.board
                # print(np.array(state).reshape(6, 7))

            # Record the winner.
            winner.append(env.get_done_winner()[1])

        # Calculate the variance and mean of decision times.
        mcts_bot_mu = np.mean(mcts_bot_time_list)
        mcts_bot_var = np.var(mcts_bot_time_list)

        bot_action_mu = np.mean(bot_action_time_list)
        bot_action_var = np.var(bot_action_time_list)

        # Print the information of the games.
        print('num_simulations={}\n'.format(num_simulations))
        # print('mcts_bot_time_list={}\n'.format(mcts_bot_time_list))
        print('mcts_bot_mu={}, mcts_bot_var={}\n'.format(mcts_bot_mu, mcts_bot_var))

        # print('bot_action_time_list={}\n'.format(bot_action_time_list))
        print('bot_action_mu={}, bot_action_var={}\n'.format(bot_action_mu, bot_action_var))

        print(
            'winner={}, draw={}, player1={}, player2={}\n'.format(
                winner, winner.count(-1), winner.count(1), winner.count(2)
            )
        )

    def test_mcts_bot_vs_mcts_bot(self, num_simulations_1: int = 50, num_simulations_2: int = 50) -> None:
        """
        Overview:
            A tictactoe game between mcts_bot and rule_bot, where rule_bot take the first move.
        Arguments:
            - num_simulations_1 (:obj:`int`): The number of the simulations of player 1 required to find the best move.
            - num_simulations_2 (:obj:`int`): The number of the simulations of player 2 required to find the best move.
        """
        # List to record the time required for each decision round and the winner.
        mcts_bot1_time_list = []
        mcts_bot2_time_list = []
        winner = []

        # Repeat the game for 10 rounds.
        for i in range(10):
            print('-' * 10 + str(i) + '-' * 10)
            # Initialize the game, where there are two players: player 1 and player 2.
            env = Connect4Env(EasyDict(self.cfg))
            # Reset the environment, set the board to a clean board and the  start player to be player 1.
            env.reset()
            state = env.board
            player1 = MCTSBot(env, 'a', num_simulations_1)  # player_index = 0, player = 1
            player2 = MCTSBot(env, 'a', num_simulations_2)
            # Set player 1 to move first.
            player_index = 0
            while not env.get_done_reward()[0]:
                """
                Overview:
                    The two players take turns to make moves, and the time required for each decision is recorded.
                """
                # Set rule_bot to be player 1.
                if player_index == 0:
                    t1 = time.time()
                    # action = env.bot_action()
                    action = player1.get_actions(state, player_index=player_index)
                    t2 = time.time()
                    # print("The time difference is :", t2-t1)
                    mcts_bot1_time_list.append(t2 - t1)
                    player_index = 1
                # Set mcts_bot to be player 2.
                else:
                    t1 = time.time()
                    # action = env.bot_action()
                    action = player2.get_actions(state, player_index=player_index)
                    t2 = time.time()
                    # print("The time difference is :", t2-t1)
                    mcts_bot2_time_list.append(t2 - t1)
                    player_index = 0
                env.step(action)
                state = env.board
                # print(np.array(state).reshape(6, 7))

            # Record the winner.
            winner.append(env.get_done_winner()[1])

        # Calculate the variance and mean of decision times.
        mcts_bot1_mu = np.mean(mcts_bot1_time_list)
        mcts_bot1_var = np.var(mcts_bot1_time_list)

        mcts_bot2_mu = np.mean(mcts_bot2_time_list)
        mcts_bot2_var = np.var(mcts_bot2_time_list)

        # Print the information of the games.
        print('num_simulations={}\n'.format(200))
        print('mcts_bot1_time_list={}\n'.format(mcts_bot1_time_list))
        print('mcts_bot1_mu={}, mcts_bot1_var={}\n'.format(mcts_bot1_mu, mcts_bot1_var))

        print('num_simulations={}\n'.format(1000))
        print('mcts_bot2_time_list={}\n'.format(mcts_bot2_time_list))
        print('mcts_bot2_mu={}, mcts_bot2_var={}\n'.format(mcts_bot2_mu, mcts_bot2_var))

        print(
            'winner={}, draw={}, player1={}, player2={}\n'.format(
                winner, winner.count(-1), winner.count(1), winner.count(2)
            )
        )

    def test_rule_bot_vs_rule_bot(self) -> None:
        """
        Overview:
            A tictactoe game between mcts_bot and rule_bot, where rule_bot take the first move.
        Arguments:
            - num_simulations (:obj:`int`): The number of the simulations required to find the best move.
        """
        # List to record the time required for each decision round and the winner.
        bot_action_time_list2 = []
        bot_action_time_list1 = []
        winner = []

        # Repeat the game for 10 rounds.
        for i in range(10):
            print('-' * 10 + str(i) + '-' * 10)
            # Initialize the game, where there are two players: player 1 and player 2.
            env = Connect4Env(EasyDict(self.cfg))
            # Reset the environment, set the board to a clean board and the  start player to be player 1.
            env.reset(replay_name_suffix=f'test{i}')
            # Set player 1 to move first.
            player_index = 0
            while not env.get_done_reward()[0]:
                """
                Overview:
                    The two players take turns to make moves, and the time required for each decision is recorded.
                """
                # Set rule_bot to be player 1.
                if player_index == 0:
                    t1 = time.time()
                    action = env.bot_action()
                    t2 = time.time()
                    # print("The time difference is :", t2-t1)
                    bot_action_time_list1.append(t2 - t1)
                    player_index = 1
                # Set mcts_bot to be player 2.
                else:
                    t1 = time.time()
                    action = env.bot_action()
                    # action = player.get_actions(state, player_index=player_index)
                    t2 = time.time()
                    # print("The time difference is :", t2-t1)
                    bot_action_time_list2.append(t2 - t1)
                    player_index = 0
                env.step(action)
                state = env.board
                # print(np.array(state).reshape(6, 7))

            # Record the winner.
            winner.append(env.get_done_winner()[1])

        # Calculate the variance and mean of decision times.
        bot_action_mu1 = np.mean(bot_action_time_list1)
        bot_action_var1 = np.var(bot_action_time_list1)

        bot_action_mu2 = np.mean(bot_action_time_list2)
        bot_action_var2 = np.var(bot_action_time_list2)

        # Print the information of the games.
        # print('bot_action_time_list1={}\n'.format(bot_action_time_list1))
        print('bot_action_mu1={}, bot_action_var1={}\n'.format(bot_action_mu1, bot_action_var1))

        # print('bot_action_time_list={}\n'.format(bot_action_time_list))
        print('bbot_action_mu2={}, bot_action_var2={}\n'.format(bot_action_mu2, bot_action_var2))

        print(
            'winner={}, draw={}, player1={}, player2={}\n'.format(
                winner, winner.count(-1), winner.count(1), winner.count(2)
            )
        )