Spaces:
Sleeping
Sleeping
from easydict import EasyDict | |
from functools import partial | |
import ding.envs.gym_env | |
cfg = dict( | |
exp_name='LunarLanderContinuous-V2-DDPG', | |
seed=0, | |
env=dict( | |
env_id='LunarLanderContinuous-v2', | |
collector_env_num=8, | |
evaluator_env_num=8, | |
n_evaluator_episode=8, | |
stop_value=260, | |
act_scale=True, | |
), | |
policy=dict( | |
cuda=True, | |
random_collect_size=0, | |
model=dict( | |
obs_shape=8, | |
action_shape=2, | |
twin_critic=True, | |
action_space='regression', | |
), | |
learn=dict( | |
update_per_collect=2, | |
batch_size=128, | |
learning_rate_actor=0.001, | |
learning_rate_critic=0.001, | |
ignore_done=False, # TODO(pu) | |
# (int) When critic network updates once, how many times will actor network update. | |
# Delayed Policy Updates in original TD3 paper(https://arxiv.org/pdf/1802.09477.pdf). | |
# Default 1 for DDPG, 2 for TD3. | |
actor_update_freq=1, | |
# (bool) Whether to add noise on target network's action. | |
# Target Policy Smoothing Regularization in original TD3 paper(https://arxiv.org/pdf/1802.09477.pdf). | |
# Default True for TD3, False for DDPG. | |
noise=False, | |
noise_sigma=0.1, | |
noise_range=dict( | |
min=-0.5, | |
max=0.5, | |
), | |
), | |
collect=dict( | |
n_sample=48, | |
noise_sigma=0.1, | |
collector=dict(collect_print_freq=1000, ), | |
), | |
eval=dict(evaluator=dict(eval_freq=100, ), ), | |
other=dict(replay_buffer=dict(replay_buffer_size=20000, ), ), | |
), | |
wandb_logger=dict( | |
gradient_logger=True, video_logger=True, plot_logger=True, action_logger=True, return_logger=False | |
), | |
) | |
cfg = EasyDict(cfg) | |
env = partial(ding.envs.gym_env.env, continuous=True) | |