Spaces:
Sleeping
Sleeping
from easydict import EasyDict | |
import ding.envs.gym_env | |
cfg = dict( | |
exp_name='Pendulum-v1-TD3', | |
seed=0, | |
env=dict( | |
env_id='Pendulum-v1', | |
collector_env_num=8, | |
evaluator_env_num=5, | |
n_evaluator_episode=5, | |
stop_value=-250, | |
act_scale=True, | |
), | |
policy=dict( | |
cuda=False, | |
priority=False, | |
random_collect_size=800, | |
model=dict( | |
obs_shape=3, | |
action_shape=1, | |
twin_critic=True, | |
action_space='regression', | |
), | |
learn=dict( | |
update_per_collect=2, | |
batch_size=128, | |
learning_rate_actor=0.001, | |
learning_rate_critic=0.001, | |
ignore_done=True, | |
actor_update_freq=2, | |
noise=True, | |
noise_sigma=0.1, | |
noise_range=dict( | |
min=-0.5, | |
max=0.5, | |
), | |
), | |
collect=dict( | |
n_sample=48, | |
noise_sigma=0.1, | |
collector=dict(collect_print_freq=1000, ), | |
), | |
eval=dict(evaluator=dict(eval_freq=100, ), ), | |
other=dict(replay_buffer=dict(replay_buffer_size=20000, ), ), | |
), | |
wandb_logger=dict( | |
gradient_logger=True, video_logger=True, plot_logger=True, action_logger=True, return_logger=False | |
), | |
) | |
cfg = EasyDict(cfg) | |
env = ding.envs.gym_env.env | |