Spaces:
Sleeping
Sleeping
from typing import Optional, Union, Any, List | |
from easydict import EasyDict | |
from ding.utils import deep_merge_dicts, SequenceType | |
from collections import namedtuple | |
import numpy as np | |
import torch | |
class LevelSampler(): | |
""" | |
Overview: | |
Policy class of Prioritized Level Replay algorithm. | |
https://arxiv.org/pdf/2010.03934.pdf | |
PLR is a method for improving generalization and sample-efficiency of \ | |
deep RL agents on procedurally-generated environments by adaptively updating \ | |
a sampling distribution over the training levels based on a score of the learning \ | |
potential of replaying each level. | |
""" | |
config = dict( | |
strategy='policy_entropy', | |
replay_schedule='fixed', | |
score_transform='rank', | |
temperature=1.0, | |
eps=0.05, | |
rho=0.2, | |
nu=0.5, | |
alpha=1.0, | |
staleness_coef=0, | |
staleness_transform='power', | |
staleness_temperature=1.0, | |
) | |
def __init__( | |
self, | |
seeds: Optional[List[int]], | |
obs_space: Union[int, SequenceType], | |
action_space: int, | |
num_actors: int, | |
cfg: EasyDict, | |
): | |
self.cfg = EasyDict(deep_merge_dicts(self.config, cfg)) | |
self.cfg.update(cfg) | |
self.obs_space = obs_space | |
self.action_space = action_space | |
self.strategy = self.cfg.strategy | |
self.replay_schedule = self.cfg.replay_schedule | |
self.score_transform = self.cfg.score_transform | |
self.temperature = self.cfg.temperature | |
# Eps means the level replay epsilon for eps-greedy sampling | |
self.eps = self.cfg.eps | |
# Rho means the minimum size of replay set relative to total number of levels before sampling replays | |
self.rho = self.cfg.rho | |
# Nu means the probability of sampling a new level instead of a replay level | |
self.nu = self.cfg.nu | |
# Alpha means the level score EWA smoothing factor | |
self.alpha = self.cfg.alpha | |
self.staleness_coef = self.cfg.staleness_coef | |
self.staleness_transform = self.cfg.staleness_transform | |
self.staleness_temperature = self.cfg.staleness_temperature | |
# Track seeds and scores as in np arrays backed by shared memory | |
self.seeds = np.array(seeds, dtype=np.int64) | |
self.seed2index = {seed: i for i, seed in enumerate(seeds)} | |
self.unseen_seed_weights = np.ones(len(seeds)) | |
self.seed_scores = np.zeros(len(seeds)) | |
self.partial_seed_scores = np.zeros((num_actors, len(seeds)), dtype=np.float32) | |
self.partial_seed_steps = np.zeros((num_actors, len(seeds)), dtype=np.int64) | |
self.seed_staleness = np.zeros(len(seeds)) | |
self.next_seed_index = 0 # Only used for sequential strategy | |
def update_with_rollouts(self, train_data: dict, num_actors: int): | |
total_steps = train_data['reward'].shape[0] | |
if self.strategy == 'random': | |
return | |
if self.strategy == 'policy_entropy': | |
score_function = self._entropy | |
elif self.strategy == 'least_confidence': | |
score_function = self._least_confidence | |
elif self.strategy == 'min_margin': | |
score_function = self._min_margin | |
elif self.strategy == 'gae': | |
score_function = self._gae | |
elif self.strategy == 'value_l1': | |
score_function = self._value_l1 | |
elif self.strategy == 'one_step_td_error': | |
score_function = self._one_step_td_error | |
else: | |
raise ValueError('Not supported strategy: {}'.format(self.strategy)) | |
self._update_with_rollouts(train_data, num_actors, total_steps, score_function) | |
for actor_index in range(self.partial_seed_scores.shape[0]): | |
for seed_idx in range(self.partial_seed_scores.shape[1]): | |
if self.partial_seed_scores[actor_index][seed_idx] != 0: | |
self.update_seed_score(actor_index, seed_idx, 0, 0) | |
self.partial_seed_scores.fill(0) | |
self.partial_seed_steps.fill(0) | |
def update_seed_score(self, actor_index: int, seed_idx: int, score: float, num_steps: int): | |
score = self._partial_update_seed_score(actor_index, seed_idx, score, num_steps, done=True) | |
self.unseen_seed_weights[seed_idx] = 0. # No longer unseen | |
old_score = self.seed_scores[seed_idx] | |
self.seed_scores[seed_idx] = (1 - self.alpha) * old_score + self.alpha * score | |
def _partial_update_seed_score( | |
self, actor_index: int, seed_idx: int, score: float, num_steps: int, done: bool = False | |
): | |
partial_score = self.partial_seed_scores[actor_index][seed_idx] | |
partial_num_steps = self.partial_seed_steps[actor_index][seed_idx] | |
running_num_steps = partial_num_steps + num_steps | |
merged_score = partial_score + (score - partial_score) * num_steps / float(running_num_steps) | |
if done: | |
self.partial_seed_scores[actor_index][seed_idx] = 0. # zero partial score, partial num_steps | |
self.partial_seed_steps[actor_index][seed_idx] = 0 | |
else: | |
self.partial_seed_scores[actor_index][seed_idx] = merged_score | |
self.partial_seed_steps[actor_index][seed_idx] = running_num_steps | |
return merged_score | |
def _entropy(self, **kwargs): | |
episode_logits = kwargs['episode_logits'] | |
num_actions = self.action_space | |
max_entropy = -(1. / num_actions) * np.log(1. / num_actions) * num_actions | |
return (-torch.exp(episode_logits) * episode_logits).sum(-1).mean().item() / max_entropy | |
def _least_confidence(self, **kwargs): | |
episode_logits = kwargs['episode_logits'] | |
return (1 - torch.exp(episode_logits.max(-1, keepdim=True)[0])).mean().item() | |
def _min_margin(self, **kwargs): | |
episode_logits = kwargs['episode_logits'] | |
top2_confidence = torch.exp(episode_logits.topk(2, dim=-1)[0]) | |
return 1 - (top2_confidence[:, 0] - top2_confidence[:, 1]).mean().item() | |
def _gae(self, **kwargs): | |
advantages = kwargs['adv'] | |
return advantages.mean().item() | |
def _value_l1(self, **kwargs): | |
advantages = kwargs['adv'] | |
# If the absolute value of ADV is large, it means that the level can significantly change | |
# the policy and can be used to learn more | |
return advantages.abs().mean().item() | |
def _one_step_td_error(self, **kwargs): | |
rewards = kwargs['rewards'] | |
value = kwargs['value'] | |
max_t = len(rewards) | |
td_errors = (rewards[:-1] + value[:max_t - 1] - value[1:max_t]).abs() | |
return td_errors.abs().mean().item() | |
def _update_with_rollouts(self, train_data: dict, num_actors: int, all_total_steps: int, score_function): | |
level_seeds = train_data['seed'].reshape(num_actors, int(all_total_steps / num_actors)).transpose(0, 1) | |
policy_logits = train_data['logit'].reshape(num_actors, int(all_total_steps / num_actors), -1).transpose(0, 1) | |
done = train_data['done'].reshape(num_actors, int(all_total_steps / num_actors)).transpose(0, 1) | |
total_steps, num_actors = policy_logits.shape[:2] | |
num_decisions = len(policy_logits) | |
for actor_index in range(num_actors): | |
done_steps = done[:, actor_index].nonzero()[:total_steps, 0] | |
start_t = 0 | |
for t in done_steps: | |
if not start_t < total_steps: | |
break | |
if t == 0: # if t is 0, then this done step caused a full update of previous seed last cycle | |
continue | |
seed_t = level_seeds[start_t, actor_index].item() | |
seed_t = int(seed_t) | |
seed_idx_t = self.seed2index[seed_t] | |
score_function_kwargs = {} | |
episode_logits = policy_logits[start_t:t, actor_index] | |
score_function_kwargs['episode_logits'] = torch.log_softmax(episode_logits, -1) | |
if self.strategy in ['gae', 'value_l1', 'one_step_td_error']: | |
rewards = train_data['reward'].reshape(num_actors, | |
int(all_total_steps / num_actors)).transpose(0, 1) | |
adv = train_data['adv'].reshape(num_actors, int(all_total_steps / num_actors)).transpose(0, 1) | |
value = train_data['value'].reshape(num_actors, int(all_total_steps / num_actors)).transpose(0, 1) | |
score_function_kwargs['adv'] = adv[start_t:t, actor_index] | |
score_function_kwargs['rewards'] = rewards[start_t:t, actor_index] | |
score_function_kwargs['value'] = value[start_t:t, actor_index] | |
score = score_function(**score_function_kwargs) | |
num_steps = len(episode_logits) | |
self.update_seed_score(actor_index, seed_idx_t, score, num_steps) | |
start_t = t.item() | |
if start_t < total_steps: | |
seed_t = level_seeds[start_t, actor_index].item() | |
seed_idx_t = self.seed2index[seed_t] | |
score_function_kwargs = {} | |
episode_logits = policy_logits[start_t:, actor_index] | |
score_function_kwargs['episode_logits'] = torch.log_softmax(episode_logits, -1) | |
if self.strategy in ['gae', 'value_l1', 'one_step_td_error']: | |
rewards = train_data['reward'].reshape(num_actors, | |
int(all_total_steps / num_actors)).transpose(0, 1) | |
adv = train_data['adv'].reshape(num_actors, int(all_total_steps / num_actors)).transpose(0, 1) | |
value = train_data['value'].reshape(num_actors, int(all_total_steps / num_actors)).transpose(0, 1) | |
score_function_kwargs['adv'] = adv[start_t:, actor_index] | |
score_function_kwargs['rewards'] = rewards[start_t:, actor_index] | |
score_function_kwargs['value'] = value[start_t:, actor_index] | |
score = score_function(**score_function_kwargs) | |
num_steps = len(episode_logits) | |
self._partial_update_seed_score(actor_index, seed_idx_t, score, num_steps) | |
def _update_staleness(self, selected_idx: int): | |
if self.staleness_coef > 0: | |
self.seed_staleness += 1 | |
self.seed_staleness[selected_idx] = 0 | |
def _sample_replay_level(self): | |
sample_weights = self._sample_weights() | |
if np.isclose(np.sum(sample_weights), 0): | |
sample_weights = np.ones_like(sample_weights, dtype=np.float32) / len(sample_weights) | |
seed_idx = np.random.choice(range(len(self.seeds)), 1, p=sample_weights)[0] | |
seed = self.seeds[seed_idx] | |
self._update_staleness(seed_idx) | |
return int(seed) | |
def _sample_unseen_level(self): | |
sample_weights = self.unseen_seed_weights / self.unseen_seed_weights.sum() | |
seed_idx = np.random.choice(range(len(self.seeds)), 1, p=sample_weights)[0] | |
seed = self.seeds[seed_idx] | |
self._update_staleness(seed_idx) | |
return int(seed) | |
def sample(self, strategy: Optional[str] = None): | |
if not strategy: | |
strategy = self.strategy | |
if strategy == 'random': | |
seed_idx = np.random.choice(range(len(self.seeds))) | |
seed = self.seeds[seed_idx] | |
return int(seed) | |
elif strategy == 'sequential': | |
seed_idx = self.next_seed_index | |
self.next_seed_index = (self.next_seed_index + 1) % len(self.seeds) | |
seed = self.seeds[seed_idx] | |
return int(seed) | |
num_unseen = (self.unseen_seed_weights > 0).sum() | |
proportion_seen = (len(self.seeds) - num_unseen) / len(self.seeds) | |
if self.replay_schedule == 'fixed': | |
if proportion_seen >= self.rho: | |
# Sample replay level with fixed prob = 1 - nu OR if all levels seen | |
if np.random.rand() > self.nu or not proportion_seen < 1.0: | |
return self._sample_replay_level() | |
# Otherwise, sample a new level | |
return self._sample_unseen_level() | |
else: # Default to proportionate schedule | |
if proportion_seen >= self.rho and np.random.rand() < proportion_seen: | |
return self._sample_replay_level() | |
else: | |
return self._sample_unseen_level() | |
def _sample_weights(self): | |
weights = self._score_transform(self.score_transform, self.temperature, self.seed_scores) | |
weights = weights * (1 - self.unseen_seed_weights) # zero out unseen levels | |
z = np.sum(weights) | |
if z > 0: | |
weights /= z | |
staleness_weights = 0 | |
if self.staleness_coef > 0: | |
staleness_weights = self._score_transform( | |
self.staleness_transform, self.staleness_temperature, self.seed_staleness | |
) | |
staleness_weights = staleness_weights * (1 - self.unseen_seed_weights) | |
z = np.sum(staleness_weights) | |
if z > 0: | |
staleness_weights /= z | |
weights = (1 - self.staleness_coef) * weights + self.staleness_coef * staleness_weights | |
return weights | |
def _score_transform(self, transform: Optional[str], temperature: float, scores: Optional[List[float]]): | |
if transform == 'rank': | |
temp = np.flip(scores.argsort()) | |
ranks = np.empty_like(temp) | |
ranks[temp] = np.arange(len(temp)) + 1 | |
weights = 1 / ranks ** (1. / temperature) | |
elif transform == 'power': | |
eps = 0 if self.staleness_coef > 0 else 1e-3 | |
weights = (np.array(scores) + eps) ** (1. / temperature) | |
return weights | |