Spaces:
Sleeping
Sleeping
from typing import Union, Optional, List, Any, Tuple | |
import os | |
import pickle | |
import numpy as np | |
import torch | |
from functools import partial | |
from copy import deepcopy | |
from ding.config import compile_config, read_config | |
from ding.worker import SampleSerialCollector, InteractionSerialEvaluator, EpisodeSerialCollector | |
from ding.envs import create_env_manager, get_vec_env_setting | |
from ding.policy import create_policy | |
from ding.torch_utils import to_device, to_ndarray | |
from ding.utils import set_pkg_seed | |
from ding.utils.data import offline_data_save_type | |
from ding.rl_utils import get_nstep_return_data | |
from ding.utils.data import default_collate | |
def eval( | |
input_cfg: Union[str, Tuple[dict, dict]], | |
seed: int = 0, | |
env_setting: Optional[List[Any]] = None, | |
model: Optional[torch.nn.Module] = None, | |
state_dict: Optional[dict] = None, | |
load_path: Optional[str] = None, | |
replay_path: Optional[str] = None, | |
) -> float: | |
""" | |
Overview: | |
Pure policy evaluation entry. Evaluate mean episode return and save replay videos. | |
Arguments: | |
- input_cfg (:obj:`Union[str, Tuple[dict, dict]]`): Config in dict type. \ | |
``str`` type means config file path. \ | |
``Tuple[dict, dict]`` type means [user_config, create_cfg]. | |
- seed (:obj:`int`): Random seed. | |
- env_setting (:obj:`Optional[List[Any]]`): A list with 3 elements: \ | |
``BaseEnv`` subclass, collector env config, and evaluator env config. | |
- model (:obj:`Optional[torch.nn.Module]`): Instance of torch.nn.Module. | |
- state_dict (:obj:`Optional[dict]`): The state_dict of policy or model. | |
- load_path (:obj:`Optional[str]`): Path to load ckpt. | |
- replay_path (:obj:`Optional[str]`): Path to save replay. | |
""" | |
if isinstance(input_cfg, str): | |
cfg, create_cfg = read_config(input_cfg) | |
else: | |
cfg, create_cfg = deepcopy(input_cfg) | |
env_fn = None if env_setting is None else env_setting[0] | |
cfg = compile_config( | |
cfg, seed=seed, env=env_fn, auto=True, create_cfg=create_cfg, save_cfg=True, save_path='eval_config.py' | |
) | |
# Create components: env, policy, evaluator | |
if env_setting is None: | |
env_fn, _, evaluator_env_cfg = get_vec_env_setting(cfg.env, collect=False) | |
else: | |
env_fn, _, evaluator_env_cfg = env_setting | |
evaluator_env = create_env_manager(cfg.env.manager, [partial(env_fn, cfg=c) for c in evaluator_env_cfg]) | |
evaluator_env.seed(seed, dynamic_seed=False) | |
if replay_path is None: # argument > config | |
replay_path = cfg.env.get('replay_path', None) | |
if replay_path: | |
evaluator_env.enable_save_replay(replay_path) | |
set_pkg_seed(seed, use_cuda=cfg.policy.cuda) | |
policy = create_policy(cfg.policy, model=model, enable_field=['eval']) | |
if state_dict is None: | |
if load_path is None: | |
load_path = cfg.policy.learn.learner.load_path | |
state_dict = torch.load(load_path, map_location='cpu') | |
policy.eval_mode.load_state_dict(state_dict) | |
evaluator = InteractionSerialEvaluator(cfg.policy.eval.evaluator, evaluator_env, policy.eval_mode) | |
# Evaluate | |
_, episode_info = evaluator.eval() | |
episode_return = np.mean(episode_info['eval_episode_return']) | |
print('Eval is over! The performance of your RL policy is {}'.format(episode_return)) | |
return episode_return | |
def collect_demo_data( | |
input_cfg: Union[str, dict], | |
seed: int, | |
collect_count: int, | |
expert_data_path: Optional[str] = None, | |
env_setting: Optional[List[Any]] = None, | |
model: Optional[torch.nn.Module] = None, | |
state_dict: Optional[dict] = None, | |
state_dict_path: Optional[str] = None, | |
) -> None: | |
r""" | |
Overview: | |
Collect demonstration data by the trained policy. | |
Arguments: | |
- input_cfg (:obj:`Union[str, Tuple[dict, dict]]`): Config in dict type. \ | |
``str`` type means config file path. \ | |
``Tuple[dict, dict]`` type means [user_config, create_cfg]. | |
- seed (:obj:`int`): Random seed. | |
- collect_count (:obj:`int`): The count of collected data. | |
- expert_data_path (:obj:`str`): File path of the expert demo data will be written to. | |
- env_setting (:obj:`Optional[List[Any]]`): A list with 3 elements: \ | |
``BaseEnv`` subclass, collector env config, and evaluator env config. | |
- model (:obj:`Optional[torch.nn.Module]`): Instance of torch.nn.Module. | |
- state_dict (:obj:`Optional[dict]`): The state_dict of policy or model. | |
- state_dict_path (:obj:`Optional[str]`): The path of the state_dict of policy or model. | |
""" | |
if isinstance(input_cfg, str): | |
cfg, create_cfg = read_config(input_cfg) | |
else: | |
cfg, create_cfg = deepcopy(input_cfg) | |
env_fn = None if env_setting is None else env_setting[0] | |
cfg = compile_config( | |
cfg, | |
seed=seed, | |
env=env_fn, | |
auto=True, | |
create_cfg=create_cfg, | |
save_cfg=True, | |
save_path='collect_demo_data_config.py' | |
) | |
if expert_data_path is None: | |
expert_data_path = cfg.policy.collect.save_path | |
# Create components: env, policy, collector | |
if env_setting is None: | |
env_fn, collector_env_cfg, _ = get_vec_env_setting(cfg.env, eval_=False) | |
else: | |
env_fn, collector_env_cfg, _ = env_setting | |
collector_env = create_env_manager(cfg.env.manager, [partial(env_fn, cfg=c) for c in collector_env_cfg]) | |
collector_env.seed(seed) | |
set_pkg_seed(seed, use_cuda=cfg.policy.cuda) | |
policy = create_policy(cfg.policy, model=model, enable_field=['collect', 'eval']) | |
# for policies like DQN (in collect_mode has eps-greedy) | |
# collect_demo_policy = policy.collect_function( | |
# policy._forward_eval, | |
# policy._process_transition, | |
# policy._get_train_sample, | |
# policy._reset_eval, | |
# policy._get_attribute, | |
# policy._set_attribute, | |
# policy._state_dict_collect, | |
# policy._load_state_dict_collect, | |
# ) | |
collect_demo_policy = policy.collect_mode | |
if state_dict is None: | |
assert state_dict_path is not None | |
state_dict = torch.load(state_dict_path, map_location='cpu') | |
policy.collect_mode.load_state_dict(state_dict) | |
collector = SampleSerialCollector(cfg.policy.collect.collector, collector_env, collect_demo_policy) | |
if hasattr(cfg.policy.other, 'eps'): | |
policy_kwargs = {'eps': 0.} | |
else: | |
policy_kwargs = None | |
# Let's collect some expert demonstrations | |
exp_data = collector.collect(n_sample=collect_count, policy_kwargs=policy_kwargs) | |
if cfg.policy.cuda: | |
exp_data = to_device(exp_data, 'cpu') | |
# Save data transitions. | |
offline_data_save_type(exp_data, expert_data_path, data_type=cfg.policy.collect.get('data_type', 'naive')) | |
print('Collect demo data successfully') | |
def collect_episodic_demo_data( | |
input_cfg: Union[str, dict], | |
seed: int, | |
collect_count: int, | |
expert_data_path: str, | |
env_setting: Optional[List[Any]] = None, | |
model: Optional[torch.nn.Module] = None, | |
state_dict: Optional[dict] = None, | |
state_dict_path: Optional[str] = None, | |
) -> None: | |
r""" | |
Overview: | |
Collect episodic demonstration data by the trained policy. | |
Arguments: | |
- input_cfg (:obj:`Union[str, Tuple[dict, dict]]`): Config in dict type. \ | |
``str`` type means config file path. \ | |
``Tuple[dict, dict]`` type means [user_config, create_cfg]. | |
- seed (:obj:`int`): Random seed. | |
- collect_count (:obj:`int`): The count of collected data. | |
- expert_data_path (:obj:`str`): File path of the expert demo data will be written to. | |
- env_setting (:obj:`Optional[List[Any]]`): A list with 3 elements: \ | |
``BaseEnv`` subclass, collector env config, and evaluator env config. | |
- model (:obj:`Optional[torch.nn.Module]`): Instance of torch.nn.Module. | |
- state_dict (:obj:`Optional[dict]`): The state_dict of policy or model. | |
- state_dict_path (:obj:'str') the abs path of the state dict | |
""" | |
if isinstance(input_cfg, str): | |
cfg, create_cfg = read_config(input_cfg) | |
else: | |
cfg, create_cfg = deepcopy(input_cfg) | |
env_fn = None if env_setting is None else env_setting[0] | |
cfg = compile_config( | |
cfg, | |
collector=EpisodeSerialCollector, | |
seed=seed, | |
env=env_fn, | |
auto=True, | |
create_cfg=create_cfg, | |
save_cfg=True, | |
save_path='collect_demo_data_config.py' | |
) | |
# Create components: env, policy, collector | |
if env_setting is None: | |
env_fn, collector_env_cfg, _ = get_vec_env_setting(cfg.env, eval_=False) | |
else: | |
env_fn, collector_env_cfg, _ = env_setting | |
collector_env = create_env_manager(cfg.env.manager, [partial(env_fn, cfg=c) for c in collector_env_cfg]) | |
collector_env.seed(seed) | |
set_pkg_seed(seed, use_cuda=cfg.policy.cuda) | |
policy = create_policy(cfg.policy, model=model, enable_field=['collect', 'eval']) | |
collect_demo_policy = policy.collect_mode | |
if state_dict is None: | |
assert state_dict_path is not None | |
state_dict = torch.load(state_dict_path, map_location='cpu') | |
policy.collect_mode.load_state_dict(state_dict) | |
collector = EpisodeSerialCollector(cfg.policy.collect.collector, collector_env, collect_demo_policy) | |
if hasattr(cfg.policy.other, 'eps'): | |
policy_kwargs = {'eps': 0.} | |
else: | |
policy_kwargs = None | |
# Let's collect some expert demonstrations | |
exp_data = collector.collect(n_episode=collect_count, policy_kwargs=policy_kwargs) | |
if cfg.policy.cuda: | |
exp_data = to_device(exp_data, 'cpu') | |
# Save data transitions. | |
offline_data_save_type(exp_data, expert_data_path, data_type=cfg.policy.collect.get('data_type', 'naive')) | |
print('Collect episodic demo data successfully') | |
def episode_to_transitions(data_path: str, expert_data_path: str, nstep: int) -> None: | |
r""" | |
Overview: | |
Transfer episodic data into nstep transitions. | |
Arguments: | |
- data_path (:obj:str): data path that stores the pkl file | |
- expert_data_path (:obj:`str`): File path of the expert demo data will be written to. | |
- nstep (:obj:`int`): {s_{t}, a_{t}, s_{t+n}}. | |
""" | |
with open(data_path, 'rb') as f: | |
_dict = pickle.load(f) # class is list; length is cfg.reward_model.collect_count | |
post_process_data = [] | |
for i in range(len(_dict)): | |
data = get_nstep_return_data(_dict[i], nstep) | |
post_process_data.extend(data) | |
offline_data_save_type( | |
post_process_data, | |
expert_data_path, | |
) | |
def episode_to_transitions_filter(data_path: str, expert_data_path: str, nstep: int, min_episode_return: int) -> None: | |
r""" | |
Overview: | |
Transfer episodic data into n-step transitions and only take the episode data whose return is larger than | |
min_episode_return. | |
Arguments: | |
- data_path (:obj:str): data path that stores the pkl file | |
- expert_data_path (:obj:`str`): File path of the expert demo data will be written to. | |
- nstep (:obj:`int`): {s_{t}, a_{t}, s_{t+n}}. | |
""" | |
with open(data_path, 'rb') as f: | |
_dict = pickle.load(f) # class is list; length is cfg.reward_model.collect_count | |
post_process_data = [] | |
for i in range(len(_dict)): | |
episode_returns = torch.stack([_dict[i][j]['reward'] for j in range(_dict[i].__len__())], axis=0) | |
if episode_returns.sum() < min_episode_return: | |
continue | |
data = get_nstep_return_data(_dict[i], nstep) | |
post_process_data.extend(data) | |
offline_data_save_type( | |
post_process_data, | |
expert_data_path, | |
) | |