Spaces:
Sleeping
Sleeping
from typing import Union, Optional, List, Any, Tuple | |
import os | |
import torch | |
from functools import partial | |
from tensorboardX import SummaryWriter | |
from copy import deepcopy | |
from torch.utils.data import DataLoader | |
from torch.utils.data.distributed import DistributedSampler | |
from ding.envs import get_vec_env_setting, create_env_manager | |
from ding.worker import BaseLearner, InteractionSerialEvaluator | |
from ding.config import read_config, compile_config | |
from ding.policy import create_policy | |
from ding.utils import set_pkg_seed, get_world_size, get_rank | |
from ding.utils.data import create_dataset | |
def serial_pipeline_offline( | |
input_cfg: Union[str, Tuple[dict, dict]], | |
seed: int = 0, | |
env_setting: Optional[List[Any]] = None, | |
model: Optional[torch.nn.Module] = None, | |
max_train_iter: Optional[int] = int(1e10), | |
) -> 'Policy': # noqa | |
""" | |
Overview: | |
Serial pipeline entry. | |
Arguments: | |
- input_cfg (:obj:`Union[str, Tuple[dict, dict]]`): Config in dict type. \ | |
``str`` type means config file path. \ | |
``Tuple[dict, dict]`` type means [user_config, create_cfg]. | |
- seed (:obj:`int`): Random seed. | |
- env_setting (:obj:`Optional[List[Any]]`): A list with 3 elements: \ | |
``BaseEnv`` subclass, collector env config, and evaluator env config. | |
- model (:obj:`Optional[torch.nn.Module]`): Instance of torch.nn.Module. | |
- max_train_iter (:obj:`Optional[int]`): Maximum policy update iterations in training. | |
Returns: | |
- policy (:obj:`Policy`): Converged policy. | |
""" | |
if isinstance(input_cfg, str): | |
cfg, create_cfg = read_config(input_cfg) | |
else: | |
cfg, create_cfg = deepcopy(input_cfg) | |
create_cfg.policy.type = create_cfg.policy.type + '_command' | |
cfg = compile_config(cfg, seed=seed, auto=True, create_cfg=create_cfg) | |
# Dataset | |
dataset = create_dataset(cfg) | |
sampler, shuffle = None, True | |
if get_world_size() > 1: | |
sampler, shuffle = DistributedSampler(dataset), False | |
dataloader = DataLoader( | |
dataset, | |
# Dividing by get_world_size() here simply to make multigpu | |
# settings mathmatically equivalent to the singlegpu setting. | |
# If the training efficiency is the bottleneck, feel free to | |
# use the original batch size per gpu and increase learning rate | |
# correspondingly. | |
cfg.policy.learn.batch_size // get_world_size(), | |
# cfg.policy.learn.batch_size | |
shuffle=shuffle, | |
sampler=sampler, | |
collate_fn=lambda x: x, | |
pin_memory=cfg.policy.cuda, | |
) | |
# Env, Policy | |
try: | |
if cfg.env.norm_obs.use_norm and cfg.env.norm_obs.offline_stats.use_offline_stats: | |
cfg.env.norm_obs.offline_stats.update({'mean': dataset.mean, 'std': dataset.std}) | |
except (KeyError, AttributeError): | |
pass | |
env_fn, _, evaluator_env_cfg = get_vec_env_setting(cfg.env, collect=False) | |
evaluator_env = create_env_manager(cfg.env.manager, [partial(env_fn, cfg=c) for c in evaluator_env_cfg]) | |
# Random seed | |
evaluator_env.seed(cfg.seed, dynamic_seed=False) | |
set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda) | |
policy = create_policy(cfg.policy, model=model, enable_field=['learn', 'eval']) | |
if cfg.policy.collect.data_type == 'diffuser_traj': | |
policy.init_data_normalizer(dataset.normalizer) | |
if hasattr(policy, 'set_statistic'): | |
# useful for setting action bounds for ibc | |
policy.set_statistic(dataset.statistics) | |
# Otherwise, directory may conflicts in the multigpu settings. | |
if get_rank() == 0: | |
tb_logger = SummaryWriter(os.path.join('./{}/log/'.format(cfg.exp_name), 'serial')) | |
else: | |
tb_logger = None | |
learner = BaseLearner(cfg.policy.learn.learner, policy.learn_mode, tb_logger, exp_name=cfg.exp_name) | |
evaluator = InteractionSerialEvaluator( | |
cfg.policy.eval.evaluator, evaluator_env, policy.eval_mode, tb_logger, exp_name=cfg.exp_name | |
) | |
# ========== | |
# Main loop | |
# ========== | |
# Learner's before_run hook. | |
learner.call_hook('before_run') | |
stop = False | |
for epoch in range(cfg.policy.learn.train_epoch): | |
if get_world_size() > 1: | |
dataloader.sampler.set_epoch(epoch) | |
for train_data in dataloader: | |
learner.train(train_data) | |
# Evaluate policy at most once per epoch. | |
if evaluator.should_eval(learner.train_iter): | |
stop, reward = evaluator.eval(learner.save_checkpoint, learner.train_iter) | |
if stop or learner.train_iter >= max_train_iter: | |
stop = True | |
break | |
learner.call_hook('after_run') | |
print('final reward is: {}'.format(reward)) | |
return policy, stop | |