Spaces:
Sleeping
Sleeping
from typing import Union, Optional, Tuple | |
import os | |
from functools import partial | |
from copy import deepcopy | |
import torch | |
from tensorboardX import SummaryWriter | |
from torch.utils.data import DataLoader | |
from ding.envs import get_vec_env_setting, create_env_manager | |
from ding.worker import BaseLearner, InteractionSerialEvaluator | |
from ding.config import read_config, compile_config | |
from ding.policy import create_policy | |
from ding.utils import set_pkg_seed | |
from ding.utils.data.dataset import load_bfs_datasets | |
def serial_pipeline_pc( | |
input_cfg: Union[str, Tuple[dict, dict]], | |
seed: int = 0, | |
model: Optional[torch.nn.Module] = None, | |
max_iter=int(1e6), | |
) -> Union['Policy', bool]: # noqa | |
r""" | |
Overview: | |
Serial pipeline entry of procedure cloning using BFS as expert policy. | |
Arguments: | |
- input_cfg (:obj:`Union[str, Tuple[dict, dict]]`): Config in dict type. \ | |
``str`` type means config file path. \ | |
``Tuple[dict, dict]`` type means [user_config, create_cfg]. | |
- seed (:obj:`int`): Random seed. | |
- model (:obj:`Optional[torch.nn.Module]`): Instance of torch.nn.Module. | |
- max_iter (:obj:`Optional[int]`): Max iteration for executing PC training. | |
Returns: | |
- policy (:obj:`Policy`): Converged policy. | |
- convergence (:obj:`bool`): whether the training is converged | |
""" | |
if isinstance(input_cfg, str): | |
cfg, create_cfg = read_config(input_cfg) | |
else: | |
cfg, create_cfg = deepcopy(input_cfg) | |
cfg = compile_config(cfg, seed=seed, auto=True, create_cfg=create_cfg) | |
# Env, Policy | |
env_fn, _, evaluator_env_cfg = get_vec_env_setting(cfg.env) | |
evaluator_env = create_env_manager(cfg.env.manager, [partial(env_fn, cfg=c) for c in evaluator_env_cfg]) | |
# Random seed | |
evaluator_env.seed(cfg.seed, dynamic_seed=False) | |
set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda) | |
policy = create_policy(cfg.policy, model=model, enable_field=['learn', 'eval']) | |
# Main components | |
tb_logger = SummaryWriter(os.path.join('./{}/log/'.format(cfg.exp_name), 'serial')) | |
train_data, test_data = load_bfs_datasets(train_seeds=cfg.train_seeds) | |
dataloader = DataLoader(train_data, batch_size=cfg.policy.learn.batch_size, shuffle=True) | |
test_dataloader = DataLoader(test_data, batch_size=cfg.policy.learn.batch_size, shuffle=True) | |
learner = BaseLearner(cfg.policy.learn.learner, policy.learn_mode, tb_logger, exp_name=cfg.exp_name) | |
evaluator = InteractionSerialEvaluator( | |
cfg.policy.eval.evaluator, evaluator_env, policy.eval_mode, tb_logger, exp_name=cfg.exp_name | |
) | |
# ========== | |
# Main loop | |
# ========== | |
learner.call_hook('before_run') | |
stop = False | |
iter_cnt = 0 | |
for epoch in range(cfg.policy.learn.train_epoch): | |
# train | |
criterion = torch.nn.CrossEntropyLoss() | |
for i, train_data in enumerate(dataloader): | |
learner.train(train_data) | |
iter_cnt += 1 | |
if iter_cnt >= max_iter: | |
stop = True | |
break | |
if epoch % 69 == 0: | |
policy._optimizer.param_groups[0]['lr'] /= 10 | |
if stop: | |
break | |
losses = [] | |
acces = [] | |
# Evaluation | |
for _, test_data in enumerate(test_dataloader): | |
observations, bfs_input_maps, bfs_output_maps = test_data['obs'], test_data['bfs_in'].long(), \ | |
test_data['bfs_out'].long() | |
states = observations | |
bfs_input_onehot = torch.nn.functional.one_hot(bfs_input_maps, 5).float() | |
bfs_states = torch.cat([ | |
states, | |
bfs_input_onehot, | |
], dim=-1).cuda() | |
logits = policy._model(bfs_states)['logit'] | |
logits = logits.flatten(0, -2) | |
labels = bfs_output_maps.flatten(0, -1).cuda() | |
loss = criterion(logits, labels).item() | |
preds = torch.argmax(logits, dim=-1) | |
acc = torch.sum((preds == labels)) / preds.shape[0] | |
losses.append(loss) | |
acces.append(acc) | |
print('Test Finished! Loss: {} acc: {}'.format(sum(losses) / len(losses), sum(acces) / len(acces))) | |
stop, reward = evaluator.eval(learner.save_checkpoint, learner.train_iter) | |
learner.call_hook('after_run') | |
print('final reward is: {}'.format(reward)) | |
return policy, stop | |