Spaces:
Sleeping
Sleeping
from typing import Union, Optional, List, Any, Tuple | |
import os | |
import torch | |
import numpy as np | |
from ditk import logging | |
from functools import partial | |
from tensorboardX import SummaryWriter | |
from copy import deepcopy | |
from ding.envs import get_vec_env_setting, create_env_manager | |
from ding.worker import BaseLearner, InteractionSerialEvaluator, BaseSerialCommander, create_buffer, \ | |
create_serial_collector | |
from ding.config import read_config, compile_config | |
from ding.policy import create_policy | |
from ding.utils import set_pkg_seed | |
from .utils import random_collect, mark_not_expert | |
def serial_pipeline_r2d3( | |
input_cfg: Union[str, Tuple[dict, dict]], | |
expert_cfg: Union[str, Tuple[dict, dict]], | |
seed: int = 0, | |
env_setting: Optional[List[Any]] = None, | |
model: Optional[torch.nn.Module] = None, | |
expert_model: Optional[torch.nn.Module] = None, | |
max_train_iter: Optional[int] = int(1e10), | |
max_env_step: Optional[int] = int(1e10), | |
) -> 'Policy': # noqa | |
""" | |
Overview: | |
Serial pipeline r2d3 entry: we create this serial pipeline in order to\ | |
implement r2d3 in DI-engine. For now, we support the following envs\ | |
Lunarlander, Pong, Qbert. The demonstration\ | |
data come from the expert model. We use a well-trained model to \ | |
generate demonstration data online | |
Arguments: | |
- input_cfg (:obj:`Union[str, Tuple[dict, dict]]`): Config in dict type. \ | |
``str`` type means config file path. \ | |
``Tuple[dict, dict]`` type means [user_config, create_cfg]. | |
- seed (:obj:`int`): Random seed. | |
- env_setting (:obj:`Optional[List[Any]]`): A list with 3 elements: \ | |
``BaseEnv`` subclass, collector env config, and evaluator env config. | |
- model (:obj:`Optional[torch.nn.Module]`): Instance of torch.nn.Module. | |
- expert_model (:obj:`Optional[torch.nn.Module]`): Instance of torch.nn.Module.\ | |
The default model is DQN(**cfg.policy.model) | |
- max_train_iter (:obj:`Optional[int]`): Maximum policy update iterations in training. | |
- max_env_step (:obj:`Optional[int]`): Maximum collected environment interaction steps. | |
Returns: | |
- policy (:obj:`Policy`): Converged policy. | |
""" | |
if isinstance(input_cfg, str): | |
cfg, create_cfg = read_config(input_cfg) | |
expert_cfg, expert_create_cfg = read_config(expert_cfg) | |
else: | |
cfg, create_cfg = deepcopy(input_cfg) | |
expert_cfg, expert_create_cfg = expert_cfg | |
create_cfg.policy.type = create_cfg.policy.type + '_command' | |
expert_create_cfg.policy.type = expert_create_cfg.policy.type + '_command' | |
env_fn = None if env_setting is None else env_setting[0] | |
cfg = compile_config(cfg, seed=seed, env=env_fn, auto=True, create_cfg=create_cfg, save_cfg=True) | |
expert_cfg = compile_config( | |
expert_cfg, seed=seed, env=env_fn, auto=True, create_cfg=expert_create_cfg, save_cfg=True | |
) | |
# Create main components: env, policy | |
if env_setting is None: | |
env_fn, collector_env_cfg, evaluator_env_cfg = get_vec_env_setting(cfg.env) | |
else: | |
env_fn, collector_env_cfg, evaluator_env_cfg = env_setting | |
collector_env = create_env_manager(cfg.env.manager, [partial(env_fn, cfg=c) for c in collector_env_cfg]) | |
expert_collector_env = create_env_manager( | |
expert_cfg.env.manager, [partial(env_fn, cfg=c) for c in collector_env_cfg] | |
) | |
evaluator_env = create_env_manager(cfg.env.manager, [partial(env_fn, cfg=c) for c in evaluator_env_cfg]) | |
expert_collector_env.seed(cfg.seed) | |
collector_env.seed(cfg.seed) | |
evaluator_env.seed(cfg.seed, dynamic_seed=False) | |
expert_policy = create_policy(expert_cfg.policy, model=expert_model, enable_field=['collect', 'command']) | |
set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda) | |
policy = create_policy(cfg.policy, model=model, enable_field=['learn', 'collect', 'eval', 'command']) | |
expert_policy.collect_mode.load_state_dict(torch.load(expert_cfg.policy.collect.model_path, map_location='cpu')) | |
# Create worker components: learner, collector, evaluator, replay buffer, commander. | |
tb_logger = SummaryWriter(os.path.join('./{}/log/'.format(cfg.exp_name), 'serial')) | |
learner = BaseLearner(cfg.policy.learn.learner, policy.learn_mode, tb_logger, exp_name=cfg.exp_name) | |
collector = create_serial_collector( | |
cfg.policy.collect.collector, | |
env=collector_env, | |
policy=policy.collect_mode, | |
tb_logger=tb_logger, | |
exp_name=cfg.exp_name | |
) | |
expert_collector = create_serial_collector( | |
expert_cfg.policy.collect.collector, | |
env=expert_collector_env, | |
policy=expert_policy.collect_mode, | |
tb_logger=tb_logger, | |
exp_name=expert_cfg.exp_name | |
) | |
evaluator = InteractionSerialEvaluator( | |
cfg.policy.eval.evaluator, evaluator_env, policy.eval_mode, tb_logger, exp_name=cfg.exp_name | |
) | |
replay_buffer = create_buffer(cfg.policy.other.replay_buffer, tb_logger=tb_logger, exp_name=cfg.exp_name) | |
commander = BaseSerialCommander( | |
cfg.policy.other.commander, learner, collector, evaluator, replay_buffer, policy.command_mode | |
) | |
expert_commander = BaseSerialCommander( | |
expert_cfg.policy.other.commander, learner, expert_collector, evaluator, replay_buffer, | |
expert_policy.command_mode | |
) # we create this to avoid the issue of eps, this is an issue due to the sample collector part. | |
expert_collect_kwargs = expert_commander.step() | |
if 'eps' in expert_collect_kwargs: | |
expert_collect_kwargs['eps'] = -1 | |
# ========== | |
# Main loop | |
# ========== | |
# Learner's before_run hook. | |
learner.call_hook('before_run') | |
if expert_cfg.policy.learn.expert_replay_buffer_size != 0: # for ablation study | |
expert_buffer = create_buffer(expert_cfg.policy.other.replay_buffer, tb_logger=tb_logger, exp_name=cfg.exp_name) | |
expert_data = expert_collector.collect( | |
n_sample=expert_cfg.policy.learn.expert_replay_buffer_size, | |
train_iter=learner.train_iter, | |
policy_kwargs=expert_collect_kwargs | |
) | |
for i in range(len(expert_data)): | |
# set is_expert flag(expert 1, agent 0) | |
# expert_data[i]['is_expert'] = 1 # for transition-based alg. | |
expert_data[i]['is_expert'] = [1] * expert_cfg.policy.collect.unroll_len # for rnn/sequence-based alg. | |
expert_buffer.push(expert_data, cur_collector_envstep=0) | |
for _ in range(cfg.policy.learn.per_train_iter_k): # pretrain | |
if evaluator.should_eval(learner.train_iter): | |
stop, reward = evaluator.eval(learner.save_checkpoint, learner.train_iter, collector.envstep) | |
if stop: | |
break | |
# Learn policy from collected data | |
# Expert_learner will train ``update_per_collect == 1`` times in one iteration. | |
train_data = expert_buffer.sample(learner.policy.get_attribute('batch_size'), learner.train_iter) | |
learner.train(train_data, collector.envstep) | |
if learner.policy.get_attribute('priority'): | |
expert_buffer.update(learner.priority_info) | |
learner.priority_info = {} | |
# Accumulate plenty of data at the beginning of training. | |
if cfg.policy.get('random_collect_size', 0) > 0: | |
random_collect( | |
cfg.policy, policy, collector, collector_env, commander, replay_buffer, postprocess_data_fn=mark_not_expert | |
) | |
while True: | |
collect_kwargs = commander.step() | |
# Evaluate policy performance | |
if evaluator.should_eval(learner.train_iter): | |
stop, reward = evaluator.eval(learner.save_checkpoint, learner.train_iter, collector.envstep) | |
if stop: | |
break | |
# Collect data by default config n_sample/n_episode | |
new_data = collector.collect(train_iter=learner.train_iter, policy_kwargs=collect_kwargs) | |
for i in range(len(new_data)): | |
# set is_expert flag(expert 1, agent 0) | |
new_data[i]['is_expert'] = [0] * expert_cfg.policy.collect.unroll_len | |
replay_buffer.push(new_data, cur_collector_envstep=collector.envstep) | |
# Learn policy from collected data | |
for i in range(cfg.policy.learn.update_per_collect): | |
if expert_cfg.policy.learn.expert_replay_buffer_size != 0: | |
# Learner will train ``update_per_collect`` times in one iteration. | |
# The hyperparameter pho, the demo ratio, control the propotion of data coming\ | |
# from expert demonstrations versus from the agent's own experience. | |
expert_batch_size = int( | |
np.float32(np.random.rand(learner.policy.get_attribute('batch_size')) < cfg.policy.collect.pho | |
).sum() | |
) | |
agent_batch_size = (learner.policy.get_attribute('batch_size')) - expert_batch_size | |
train_data_agent = replay_buffer.sample(agent_batch_size, learner.train_iter) | |
train_data_expert = expert_buffer.sample(expert_batch_size, learner.train_iter) | |
if train_data_agent is None: | |
# It is possible that replay buffer's data count is too few to train ``update_per_collect`` times | |
logging.warning( | |
"Replay buffer's data can only train for {} steps. ".format(i) + | |
"You can modify data collect config, e.g. increasing n_sample, n_episode." | |
) | |
break | |
train_data = train_data_agent + train_data_expert | |
learner.train(train_data, collector.envstep) | |
if learner.policy.get_attribute('priority'): | |
# When collector, set replay_buffer_idx and replay_unique_id for each data item, priority = 1.\ | |
# When learner, assign priority for each data item according their loss | |
learner.priority_info_agent = deepcopy(learner.priority_info) | |
learner.priority_info_expert = deepcopy(learner.priority_info) | |
learner.priority_info_agent['priority'] = learner.priority_info['priority'][0:agent_batch_size] | |
learner.priority_info_agent['replay_buffer_idx'] = learner.priority_info['replay_buffer_idx'][ | |
0:agent_batch_size] | |
learner.priority_info_agent['replay_unique_id'] = learner.priority_info['replay_unique_id'][ | |
0:agent_batch_size] | |
learner.priority_info_expert['priority'] = learner.priority_info['priority'][agent_batch_size:] | |
learner.priority_info_expert['replay_buffer_idx'] = learner.priority_info['replay_buffer_idx'][ | |
agent_batch_size:] | |
learner.priority_info_expert['replay_unique_id'] = learner.priority_info['replay_unique_id'][ | |
agent_batch_size:] | |
# Expert data and demo data update their priority separately. | |
replay_buffer.update(learner.priority_info_agent) | |
expert_buffer.update(learner.priority_info_expert) | |
else: | |
# Learner will train ``update_per_collect`` times in one iteration. | |
train_data = replay_buffer.sample(learner.policy.get_attribute('batch_size'), learner.train_iter) | |
if train_data is None: | |
# It is possible that replay buffer's data count is too few to train ``update_per_collect`` times | |
logging.warning( | |
"Replay buffer's data can only train for {} steps. ".format(i) + | |
"You can modify data collect config, e.g. increasing n_sample, n_episode." | |
) | |
break | |
learner.train(train_data, collector.envstep) | |
if learner.policy.get_attribute('priority'): | |
replay_buffer.update(learner.priority_info) | |
if collector.envstep >= max_env_step or learner.train_iter >= max_train_iter: | |
break | |
# Learner's after_run hook. | |
learner.call_hook('after_run') | |
return policy | |