Spaces:
Sleeping
Sleeping
import pytest | |
from itertools import product | |
import time | |
import os | |
from copy import deepcopy | |
from ding.entry import serial_pipeline, collect_demo_data, serial_pipeline_offline | |
from dizoo.classic_control.cartpole.config.cartpole_dqn_config import cartpole_dqn_config, cartpole_dqn_create_config | |
from dizoo.classic_control.cartpole.config.cartpole_dqn_stdim_config import cartpole_dqn_stdim_config, \ | |
cartpole_dqn_stdim_create_config | |
from dizoo.classic_control.cartpole.config.cartpole_ppo_config import cartpole_ppo_config, cartpole_ppo_create_config | |
from dizoo.classic_control.cartpole.config.cartpole_ppo_offpolicy_config import cartpole_ppo_offpolicy_config, \ | |
cartpole_ppo_offpolicy_create_config | |
from dizoo.classic_control.cartpole.config.cartpole_impala_config import cartpole_impala_config, cartpole_impala_create_config # noqa | |
from dizoo.classic_control.cartpole.config.cartpole_rainbow_config import cartpole_rainbow_config, cartpole_rainbow_create_config # noqa | |
from dizoo.classic_control.cartpole.config.cartpole_iqn_config import cartpole_iqn_config, cartpole_iqn_create_config # noqa | |
from dizoo.classic_control.cartpole.config.cartpole_fqf_config import cartpole_fqf_config, cartpole_fqf_create_config # noqa | |
from dizoo.classic_control.cartpole.config.cartpole_c51_config import cartpole_c51_config, cartpole_c51_create_config # noqa | |
from dizoo.classic_control.cartpole.config.cartpole_qrdqn_config import cartpole_qrdqn_config, cartpole_qrdqn_create_config # noqa | |
from dizoo.classic_control.cartpole.config.cartpole_sqn_config import cartpole_sqn_config, cartpole_sqn_create_config # noqa | |
from dizoo.classic_control.cartpole.config.cartpole_ppg_config import cartpole_ppg_config, cartpole_ppg_create_config # noqa | |
from dizoo.classic_control.cartpole.config.cartpole_acer_config import cartpole_acer_config, cartpole_acer_create_config # noqa | |
from dizoo.classic_control.cartpole.config.cartpole_sac_config import cartpole_sac_config, cartpole_sac_create_config # noqa | |
from dizoo.classic_control.cartpole.entry.cartpole_ppg_main import main as ppg_main | |
from dizoo.classic_control.cartpole.entry.cartpole_ppo_main import main as ppo_main | |
from dizoo.classic_control.cartpole.config.cartpole_r2d2_config import cartpole_r2d2_config, cartpole_r2d2_create_config # noqa | |
from dizoo.classic_control.pendulum.config import pendulum_ddpg_config, pendulum_ddpg_create_config | |
from dizoo.classic_control.pendulum.config import pendulum_td3_config, pendulum_td3_create_config | |
from dizoo.classic_control.pendulum.config import pendulum_sac_config, pendulum_sac_create_config | |
from dizoo.classic_control.pendulum.config import pendulum_d4pg_config, pendulum_d4pg_create_config | |
from dizoo.bitflip.config import bitflip_her_dqn_config, bitflip_her_dqn_create_config | |
from dizoo.bitflip.entry.bitflip_dqn_main import main as bitflip_dqn_main | |
from dizoo.petting_zoo.config import ptz_simple_spread_atoc_config, ptz_simple_spread_atoc_create_config # noqa | |
from dizoo.petting_zoo.config import ptz_simple_spread_collaq_config, ptz_simple_spread_collaq_create_config # noqa | |
from dizoo.petting_zoo.config import ptz_simple_spread_coma_config, ptz_simple_spread_coma_create_config # noqa | |
from dizoo.petting_zoo.config import ptz_simple_spread_qmix_config, ptz_simple_spread_qmix_create_config # noqa | |
from dizoo.petting_zoo.config import ptz_simple_spread_qtran_config, ptz_simple_spread_qtran_create_config # noqa | |
from dizoo.petting_zoo.config import ptz_simple_spread_vdn_config, ptz_simple_spread_vdn_create_config # noqa | |
from dizoo.petting_zoo.config import ptz_simple_spread_wqmix_config, ptz_simple_spread_wqmix_create_config # noqa | |
from dizoo.petting_zoo.config import ptz_simple_spread_madqn_config, ptz_simple_spread_madqn_create_config # noqa | |
from dizoo.league_demo.league_demo_ppo_config import league_demo_ppo_config | |
from dizoo.league_demo.selfplay_demo_ppo_main import main as selfplay_main | |
from dizoo.league_demo.league_demo_ppo_main import main as league_main | |
from dizoo.classic_control.pendulum.config.pendulum_sac_data_generation_config import pendulum_sac_data_genearation_config, pendulum_sac_data_genearation_create_config # noqa | |
from dizoo.classic_control.pendulum.config.pendulum_cql_config import pendulum_cql_config, pendulum_cql_create_config # noqa | |
from dizoo.classic_control.cartpole.config.cartpole_qrdqn_generation_data_config import cartpole_qrdqn_generation_data_config, cartpole_qrdqn_generation_data_create_config # noqa | |
from dizoo.classic_control.cartpole.config.cartpole_cql_config import cartpole_discrete_cql_config, cartpole_discrete_cql_create_config # noqa | |
from dizoo.classic_control.cartpole.config.cartpole_dt_config import cartpole_discrete_dt_config, cartpole_discrete_dt_create_config # noqa | |
from dizoo.classic_control.pendulum.config.pendulum_td3_data_generation_config import pendulum_td3_generation_config, pendulum_td3_generation_create_config # noqa | |
from dizoo.classic_control.pendulum.config.pendulum_td3_bc_config import pendulum_td3_bc_config, pendulum_td3_bc_create_config # noqa | |
from dizoo.classic_control.pendulum.config.pendulum_ibc_config import pendulum_ibc_config, pendulum_ibc_create_config | |
from dizoo.gym_hybrid.config.gym_hybrid_ddpg_config import gym_hybrid_ddpg_config, gym_hybrid_ddpg_create_config | |
from dizoo.gym_hybrid.config.gym_hybrid_pdqn_config import gym_hybrid_pdqn_config, gym_hybrid_pdqn_create_config | |
from dizoo.gym_hybrid.config.gym_hybrid_mpdqn_config import gym_hybrid_mpdqn_config, gym_hybrid_mpdqn_create_config | |
from dizoo.classic_control.pendulum.config.pendulum_bdq_config import pendulum_bdq_config, pendulum_bdq_create_config # noqa | |
from dizoo.classic_control.cartpole.config.cartpole_mdqn_config import cartpole_mdqn_config, cartpole_mdqn_create_config | |
def test_dqn(): | |
config = [deepcopy(cartpole_dqn_config), deepcopy(cartpole_dqn_create_config)] | |
config[0].policy.learn.update_per_collect = 1 | |
config[0].exp_name = 'cartpole_dqn_unittest' | |
try: | |
serial_pipeline(config, seed=0, max_train_iter=1) | |
except Exception: | |
assert False, "pipeline fail" | |
finally: | |
os.popen('rm -rf cartpole_dqn_unittest') | |
def test_mdqn(): | |
config = [deepcopy(cartpole_mdqn_config), deepcopy(cartpole_mdqn_create_config)] | |
config[0].policy.learn.update_per_collect = 1 | |
config[0].exp_name = 'cartpole_mdqn_unittest' | |
try: | |
serial_pipeline(config, seed=0, max_train_iter=1, dynamic_seed=False) | |
except Exception: | |
assert False, "pipeline fail" | |
finally: | |
os.popen('rm -rf cartpole_mdqn_unittest') | |
def test_bdq(): | |
config = [deepcopy(pendulum_bdq_config), deepcopy(pendulum_bdq_create_config)] | |
config[0].policy.learn.update_per_collect = 1 | |
config[0].exp_name = 'pendulum_bdq_unittest' | |
try: | |
serial_pipeline(config, seed=0, max_train_iter=1) | |
except Exception: | |
assert False, "pipeline fail" | |
finally: | |
os.popen('rm -rf pendulum_bdq_unittest') | |
def test_ddpg(): | |
config = [deepcopy(pendulum_ddpg_config), deepcopy(pendulum_ddpg_create_config)] | |
config[0].policy.learn.update_per_collect = 1 | |
try: | |
serial_pipeline(config, seed=0, max_train_iter=1) | |
except Exception: | |
assert False, "pipeline fail" | |
# @pytest.mark.platformtest | |
# @pytest.mark.unittest | |
def test_hybrid_ddpg(): | |
config = [deepcopy(gym_hybrid_ddpg_config), deepcopy(gym_hybrid_ddpg_create_config)] | |
config[0].policy.learn.update_per_collect = 1 | |
try: | |
serial_pipeline(config, seed=0, max_train_iter=1) | |
except Exception: | |
assert False, "pipeline fail" | |
# @pytest.mark.platformtest | |
# @pytest.mark.unittest | |
def test_hybrid_pdqn(): | |
config = [deepcopy(gym_hybrid_pdqn_config), deepcopy(gym_hybrid_pdqn_create_config)] | |
config[0].policy.learn.update_per_collect = 1 | |
try: | |
serial_pipeline(config, seed=0, max_train_iter=1) | |
except Exception: | |
assert False, "pipeline fail" | |
# @pytest.mark.platformtest | |
# @pytest.mark.unittest | |
def test_hybrid_mpdqn(): | |
config = [deepcopy(gym_hybrid_mpdqn_config), deepcopy(gym_hybrid_mpdqn_create_config)] | |
config[0].policy.learn.update_per_collect = 1 | |
try: | |
serial_pipeline(config, seed=0, max_train_iter=1) | |
except Exception: | |
assert False, "pipeline fail" | |
def test_dqn_stdim(): | |
config = [deepcopy(cartpole_dqn_stdim_config), deepcopy(cartpole_dqn_stdim_create_config)] | |
config[0].policy.learn.update_per_collect = 1 | |
config[0].exp_name = 'cartpole_dqn_stdim_unittest' | |
try: | |
serial_pipeline(config, seed=0, max_train_iter=1) | |
except Exception: | |
assert False, "pipeline fail" | |
finally: | |
os.popen('rm -rf cartpole_dqn_stdim_unittest') | |
def test_td3(): | |
config = [deepcopy(pendulum_td3_config), deepcopy(pendulum_td3_create_config)] | |
config[0].policy.learn.update_per_collect = 1 | |
try: | |
serial_pipeline(config, seed=0, max_train_iter=1) | |
except Exception: | |
assert False, "pipeline fail" | |
def test_rainbow(): | |
config = [deepcopy(cartpole_rainbow_config), deepcopy(cartpole_rainbow_create_config)] | |
config[0].policy.learn.update_per_collect = 1 | |
try: | |
serial_pipeline(config, seed=0, max_train_iter=1) | |
except Exception: | |
assert False, "pipeline fail" | |
def test_iqn(): | |
config = [deepcopy(cartpole_iqn_config), deepcopy(cartpole_iqn_create_config)] | |
config[0].policy.learn.update_per_collect = 1 | |
try: | |
serial_pipeline(config, seed=0, max_train_iter=1) | |
except Exception: | |
assert False, "pipeline fail" | |
def test_fqf(): | |
config = [deepcopy(cartpole_fqf_config), deepcopy(cartpole_fqf_create_config)] | |
config[0].policy.learn.update_per_collect = 1 | |
try: | |
serial_pipeline(config, seed=0, max_train_iter=1) | |
except Exception: | |
assert False, "pipeline fail" | |
def test_c51(): | |
config = [deepcopy(cartpole_c51_config), deepcopy(cartpole_c51_create_config)] | |
config[0].policy.learn.update_per_collect = 1 | |
try: | |
serial_pipeline(config, seed=0, max_train_iter=1) | |
except Exception: | |
assert False, "pipeline fail" | |
def test_qrdqn(): | |
config = [deepcopy(cartpole_qrdqn_config), deepcopy(cartpole_qrdqn_create_config)] | |
config[0].policy.learn.update_per_collect = 1 | |
try: | |
serial_pipeline(config, seed=0, max_train_iter=1) | |
except Exception: | |
assert False, "pipeline fail" | |
def test_ppo(): | |
config = [deepcopy(cartpole_ppo_offpolicy_config), deepcopy(cartpole_ppo_offpolicy_create_config)] | |
config[0].policy.learn.update_per_collect = 1 | |
config[0].exp_name = 'ppo_offpolicy_unittest' | |
try: | |
serial_pipeline(config, seed=0, max_train_iter=1) | |
except Exception: | |
assert False, "pipeline fail" | |
def test_ppo_nstep_return(): | |
config = [deepcopy(cartpole_ppo_offpolicy_config), deepcopy(cartpole_ppo_offpolicy_create_config)] | |
config[0].policy.learn.update_per_collect = 1 | |
config[0].policy.nstep_return = True | |
try: | |
serial_pipeline(config, seed=0, max_train_iter=1) | |
except Exception: | |
assert False, "pipeline fail" | |
def test_sac(): | |
config = [deepcopy(pendulum_sac_config), deepcopy(pendulum_sac_create_config)] | |
config[0].policy.learn.update_per_collect = 1 | |
config[0].policy.learn.auto_alpha = False | |
try: | |
serial_pipeline(config, seed=0, max_train_iter=1) | |
except Exception: | |
assert False, "pipeline fail" | |
def test_sac_auto_alpha(): | |
config = [deepcopy(pendulum_sac_config), deepcopy(pendulum_sac_create_config)] | |
config[0].policy.learn.update_per_collect = 1 | |
config[0].policy.learn.auto_alpha = True | |
config[0].policy.learn.log_space = False | |
try: | |
serial_pipeline(config, seed=0, max_train_iter=1) | |
except Exception: | |
assert False, "pipeline fail" | |
def test_sac_log_space(): | |
config = [deepcopy(pendulum_sac_config), deepcopy(pendulum_sac_create_config)] | |
config[0].policy.learn.update_per_collect = 1 | |
config[0].policy.learn.auto_alpha = True | |
config[0].policy.learn.log_space = True | |
try: | |
serial_pipeline(config, seed=0, max_train_iter=1) | |
except Exception: | |
assert False, "pipeline fail" | |
def test_discrete_sac(): | |
auto_alpha, log_space = True, False | |
config = [deepcopy(cartpole_sac_config), deepcopy(cartpole_sac_create_config)] | |
config[0].policy.learn.update_per_collect = 1 | |
config[0].policy.learn.auto_alpha = auto_alpha | |
config[0].policy.learn.log_space = log_space | |
try: | |
serial_pipeline(config, seed=0, max_train_iter=1) | |
except Exception: | |
assert False, "pipeline fail" | |
def test_discrete_sac_twin_critic(): | |
config = [deepcopy(cartpole_sac_config), deepcopy(cartpole_sac_create_config)] | |
config[0].cuda = True | |
config[0].policy.learn.update_per_collect = 1 | |
config[0].policy.learn.auto_alpha = True | |
config[0].policy.learn.log_space = True | |
config[0].policy.model.twin_critic = False | |
try: | |
serial_pipeline(config, seed=0, max_train_iter=1) | |
except Exception: | |
assert False, "pipeline fail" | |
def test_r2d2(): | |
config = [deepcopy(cartpole_r2d2_config), deepcopy(cartpole_r2d2_create_config)] | |
config[0].policy.learn.update_per_collect = 1 | |
try: | |
serial_pipeline(config, seed=0, max_train_iter=5) | |
except Exception: | |
assert False, "pipeline fail" | |
def test_impala(): | |
config = [deepcopy(cartpole_impala_config), deepcopy(cartpole_impala_create_config)] | |
config[0].policy.learn.update_per_collect = 1 | |
try: | |
serial_pipeline(config, seed=0, max_train_iter=1) | |
except Exception: | |
assert False, "pipeline fail" | |
def test_her_dqn(): | |
bitflip_her_dqn_config.policy.cuda = False | |
try: | |
bitflip_dqn_main(bitflip_her_dqn_config, seed=0, max_train_iter=1) | |
except Exception: | |
assert False, "pipeline fail" | |
def test_collaq(): | |
config = [deepcopy(ptz_simple_spread_collaq_config), deepcopy(ptz_simple_spread_collaq_create_config)] | |
config[0].policy.cuda = False | |
config[0].policy.learn.update_per_collect = 1 | |
config[0].policy.collect.n_sample = 100 | |
try: | |
serial_pipeline(config, seed=0, max_train_iter=1) | |
except Exception: | |
assert False, "pipeline fail" | |
finally: | |
os.popen('rm -rf log ckpt*') | |
def test_coma(): | |
config = [deepcopy(ptz_simple_spread_coma_config), deepcopy(ptz_simple_spread_coma_create_config)] | |
config[0].policy.cuda = False | |
config[0].policy.learn.update_per_collect = 1 | |
config[0].policy.collect.n_sample = 100 | |
try: | |
serial_pipeline(config, seed=0, max_train_iter=1) | |
except Exception: | |
assert False, "pipeline fail" | |
finally: | |
os.popen('rm -rf log ckpt*') | |
def test_qmix(): | |
config = [deepcopy(ptz_simple_spread_qmix_config), deepcopy(ptz_simple_spread_qmix_create_config)] | |
config[0].policy.cuda = False | |
config[0].policy.learn.update_per_collect = 1 | |
config[0].policy.collect.n_sample = 100 | |
try: | |
serial_pipeline(config, seed=0, max_train_iter=1) | |
except Exception: | |
assert False, "pipeline fail" | |
finally: | |
os.popen('rm -rf log ckpt*') | |
def test_wqmix(): | |
config = [deepcopy(ptz_simple_spread_wqmix_config), deepcopy(ptz_simple_spread_wqmix_create_config)] | |
config[0].policy.cuda = False | |
config[0].policy.learn.update_per_collect = 1 | |
config[0].policy.collect.n_sample = 100 | |
try: | |
serial_pipeline(config, seed=0, max_train_iter=1) | |
except Exception: | |
assert False, "pipeline fail" | |
finally: | |
os.popen('rm -rf log ckpt*') | |
def test_madqn(): | |
config = [deepcopy(ptz_simple_spread_madqn_config), deepcopy(ptz_simple_spread_madqn_create_config)] | |
config[0].policy.cuda = False | |
config[0].policy.learn.update_per_collect = 1 | |
try: | |
serial_pipeline(config, seed=0, max_train_iter=1) | |
except Exception: | |
assert False, "pipeline fail" | |
finally: | |
os.popen('rm -rf log ckpt*') | |
def test_qtran(): | |
config = [deepcopy(ptz_simple_spread_qtran_config), deepcopy(ptz_simple_spread_qtran_create_config)] | |
config[0].policy.cuda = False | |
config[0].policy.learn.update_per_collect = 1 | |
config[0].policy.collect.n_sample = 100 | |
try: | |
serial_pipeline(config, seed=0, max_train_iter=1) | |
except Exception: | |
assert False, "pipeline fail" | |
finally: | |
os.popen('rm -rf log ckpt*') | |
def test_atoc(): | |
config = [deepcopy(ptz_simple_spread_atoc_config), deepcopy(ptz_simple_spread_atoc_create_config)] | |
config[0].policy.cuda = False | |
config[0].policy.collect.n_sample = 100 | |
try: | |
serial_pipeline(config, seed=0, max_train_iter=1) | |
except Exception: | |
assert False, "pipeline fail" | |
finally: | |
os.popen('rm -rf log ckpt*') | |
def test_ppg(): | |
cartpole_ppg_config.policy.use_cuda = False | |
try: | |
ppg_main(cartpole_ppg_config, seed=0, max_train_iter=1) | |
except Exception: | |
assert False, "pipeline fail" | |
def test_sqn(): | |
config = [deepcopy(cartpole_sqn_config), deepcopy(cartpole_sqn_create_config)] | |
config[0].policy.learn.update_per_collect = 8 | |
config[0].policy.learn.batch_size = 8 | |
try: | |
serial_pipeline(config, seed=0, max_train_iter=2) | |
except Exception: | |
assert False, "pipeline fail" | |
finally: | |
os.popen('rm -rf log ckpt*') | |
def test_selfplay(): | |
try: | |
selfplay_main(deepcopy(league_demo_ppo_config), seed=0, max_train_iter=1) | |
except Exception: | |
assert False, "pipeline fail" | |
def test_league(): | |
try: | |
league_main(deepcopy(league_demo_ppo_config), seed=0, max_train_iter=1) | |
except Exception as e: | |
assert False, "pipeline fail" | |
def test_acer(): | |
config = [deepcopy(cartpole_acer_config), deepcopy(cartpole_acer_create_config)] | |
config[0].policy.learn.update_per_collect = 1 | |
try: | |
serial_pipeline(config, seed=0, max_train_iter=1) | |
except Exception: | |
assert False, "pipeline fail" | |
def test_cql(): | |
# train expert | |
config = [deepcopy(pendulum_sac_config), deepcopy(pendulum_sac_create_config)] | |
config[0].policy.learn.update_per_collect = 1 | |
config[0].exp_name = 'sac_unittest' | |
try: | |
serial_pipeline(config, seed=0, max_train_iter=1) | |
except Exception: | |
assert False, "pipeline fail" | |
# collect expert data | |
import torch | |
config = [deepcopy(pendulum_sac_data_genearation_config), deepcopy(pendulum_sac_data_genearation_create_config)] | |
collect_count = 1000 | |
expert_data_path = config[0].policy.collect.save_path | |
state_dict = torch.load('./sac_unittest/ckpt/iteration_0.pth.tar', map_location='cpu') | |
try: | |
collect_demo_data( | |
config, seed=0, collect_count=collect_count, expert_data_path=expert_data_path, state_dict=state_dict | |
) | |
except Exception: | |
assert False, "pipeline fail" | |
# test cql | |
config = [deepcopy(pendulum_cql_config), deepcopy(pendulum_cql_create_config)] | |
config[0].policy.learn.train_epoch = 1 | |
config[0].policy.eval.evaluator.eval_freq = 1 | |
try: | |
serial_pipeline_offline(config, seed=0) | |
except Exception: | |
assert False, "pipeline fail" | |
def test_ibc(): | |
# train expert | |
config = [deepcopy(pendulum_sac_config), deepcopy(pendulum_sac_create_config)] | |
config[0].policy.learn.update_per_collect = 1 | |
config[0].exp_name = 'sac_unittest' | |
try: | |
serial_pipeline(config, seed=0, max_train_iter=1) | |
except Exception: | |
assert False, "pipeline fail" | |
# collect expert data | |
import torch | |
config = [deepcopy(pendulum_sac_data_genearation_config), deepcopy(pendulum_sac_data_genearation_create_config)] | |
collect_count = 1000 | |
expert_data_path = config[0].policy.collect.save_path | |
state_dict = torch.load('./sac_unittest/ckpt/iteration_0.pth.tar', map_location='cpu') | |
try: | |
collect_demo_data( | |
config, seed=0, collect_count=collect_count, expert_data_path=expert_data_path, state_dict=state_dict | |
) | |
except Exception: | |
assert False, "pipeline fail" | |
# test cql | |
config = [deepcopy(pendulum_ibc_config), deepcopy(pendulum_ibc_create_config)] | |
config[0].policy.learn.train_epoch = 1 | |
config[0].policy.eval.evaluator.eval_freq = 1 | |
config[0].policy.model.stochastic_optim.iters = 2 | |
try: | |
serial_pipeline_offline(config, seed=0) | |
except Exception: | |
assert False, "pipeline fail" | |
def test_d4pg(): | |
config = [deepcopy(pendulum_d4pg_config), deepcopy(pendulum_d4pg_create_config)] | |
config[0].policy.learn.update_per_collect = 1 | |
try: | |
serial_pipeline(config, seed=0, max_train_iter=1) | |
except Exception as e: | |
assert False, "pipeline fail" | |
print(repr(e)) | |
def test_discrete_cql(): | |
# train expert | |
config = [deepcopy(cartpole_qrdqn_config), deepcopy(cartpole_qrdqn_create_config)] | |
config[0].policy.learn.update_per_collect = 1 | |
config[0].exp_name = 'cql_cartpole' | |
try: | |
serial_pipeline(config, seed=0, max_train_iter=1) | |
except Exception: | |
assert False, "pipeline fail" | |
# collect expert data | |
import torch | |
config = [deepcopy(cartpole_qrdqn_generation_data_config), deepcopy(cartpole_qrdqn_generation_data_create_config)] | |
state_dict = torch.load('./cql_cartpole/ckpt/iteration_0.pth.tar', map_location='cpu') | |
try: | |
collect_demo_data(config, seed=0, collect_count=1000, state_dict=state_dict) | |
except Exception as e: | |
assert False, "pipeline fail" | |
print(repr(e)) | |
# train cql | |
config = [deepcopy(cartpole_discrete_cql_config), deepcopy(cartpole_discrete_cql_create_config)] | |
config[0].policy.learn.train_epoch = 1 | |
config[0].policy.eval.evaluator.eval_freq = 1 | |
try: | |
serial_pipeline_offline(config, seed=0) | |
except Exception: | |
assert False, "pipeline fail" | |
finally: | |
os.popen('rm -rf cartpole cartpole_cql') | |
def test_discrete_dt(): | |
# train expert | |
config = [deepcopy(cartpole_qrdqn_config), deepcopy(cartpole_qrdqn_create_config)] | |
config[0].policy.learn.update_per_collect = 1 | |
config[0].exp_name = 'dt_cartpole' | |
try: | |
serial_pipeline(config, seed=0, max_train_iter=1) | |
except Exception: | |
assert False, "pipeline fail" | |
# collect expert data | |
import torch | |
config = [deepcopy(cartpole_qrdqn_generation_data_config), deepcopy(cartpole_qrdqn_generation_data_create_config)] | |
state_dict = torch.load('./dt_cartpole/ckpt/iteration_0.pth.tar', map_location='cpu') | |
try: | |
collect_demo_data(config, seed=0, collect_count=1000, state_dict=state_dict) | |
except Exception as e: | |
assert False, "pipeline fail" | |
print(repr(e)) | |
# train dt | |
config = [deepcopy(cartpole_discrete_dt_config), deepcopy(cartpole_discrete_dt_create_config)] | |
config[0].policy.eval.evaluator.eval_freq = 5 | |
try: | |
from ding.framework import task, ding_init | |
from ding.framework.context import OfflineRLContext | |
from ding.envs import SubprocessEnvManagerV2, BaseEnvManagerV2 | |
from ding.envs.env_wrappers.env_wrappers import AllinObsWrapper | |
from dizoo.classic_control.cartpole.envs import CartPoleEnv | |
from ding.utils import set_pkg_seed | |
from ding.data import create_dataset | |
from ding.config import compile_config | |
from ding.model import DecisionTransformer | |
from ding.policy import DTPolicy | |
from ding.framework.middleware import interaction_evaluator, trainer, CkptSaver, \ | |
OfflineMemoryDataFetcher, offline_logger, termination_checker | |
ding_init(config[0]) | |
config = compile_config(config[0], create_cfg=config[1], auto=True) | |
with task.start(async_mode=False, ctx=OfflineRLContext()): | |
evaluator_env = BaseEnvManagerV2( | |
env_fn=[lambda: AllinObsWrapper(CartPoleEnv(config.env)) for _ in range(config.env.evaluator_env_num)], | |
cfg=config.env.manager | |
) | |
set_pkg_seed(config.seed, use_cuda=config.policy.cuda) | |
dataset = create_dataset(config) | |
model = DecisionTransformer(**config.policy.model) | |
policy = DTPolicy(config.policy, model=model) | |
task.use(termination_checker(max_train_iter=1)) | |
task.use(interaction_evaluator(config, policy.eval_mode, evaluator_env)) | |
task.use(OfflineMemoryDataFetcher(config, dataset)) | |
task.use(trainer(config, policy.learn_mode)) | |
task.use(CkptSaver(policy, config.exp_name, train_freq=100)) | |
task.use(offline_logger()) | |
task.run() | |
except Exception: | |
assert False, "pipeline fail" | |
finally: | |
os.popen('rm -rf cartpole cartpole_dt') | |
def test_td3_bc(): | |
# train expert | |
config = [deepcopy(pendulum_td3_config), deepcopy(pendulum_td3_create_config)] | |
config[0].exp_name = 'td3' | |
config[0].policy.learn.update_per_collect = 1 | |
try: | |
serial_pipeline(config, seed=0, max_train_iter=1) | |
except Exception: | |
assert False, "pipeline fail" | |
# collect expert data | |
import torch | |
config = [deepcopy(pendulum_td3_generation_config), deepcopy(pendulum_td3_generation_create_config)] | |
state_dict = torch.load('./td3/ckpt/iteration_0.pth.tar', map_location='cpu') | |
try: | |
collect_demo_data(config, seed=0, collect_count=1000, state_dict=state_dict) | |
except Exception: | |
assert False, "pipeline fail" | |
# train td3 bc | |
config = [deepcopy(pendulum_td3_bc_config), deepcopy(pendulum_td3_bc_create_config)] | |
config[0].exp_name = 'td3_bc' | |
config[0].policy.learn.train_epoch = 1 | |
config[0].policy.eval.evaluator.eval_freq = 1 | |
try: | |
serial_pipeline_offline(config, seed=0) | |
except Exception: | |
assert False, "pipeline fail" | |
finally: | |
os.popen('rm -rf td3 td3_bc') | |