zjowowen's picture
init space
3dfe8fb
import gym
from ditk import logging
from ding.model import DQN
from ding.policy import DQNPolicy
from ding.reward_model import RndRewardModel
from ding.envs import DingEnvWrapper, BaseEnvManagerV2
from ding.data import DequeBuffer
from ding.config import compile_config
from ding.framework import task
from ding.framework.context import OnlineRLContext
from ding.framework.middleware import OffPolicyLearner, StepCollector, interaction_evaluator, data_pusher, trainer, \
eps_greedy_handler, CkptSaver
from ding.utils import set_pkg_seed
from dizoo.classic_control.cartpole.config.cartpole_dqn_rnd_config import main_config, create_config
def main():
logging.getLogger().setLevel(logging.INFO)
cfg = compile_config(main_config, create_cfg=create_config, auto=True)
with task.start(async_mode=False, ctx=OnlineRLContext()):
collector_env = BaseEnvManagerV2(
env_fn=[lambda: DingEnvWrapper(gym.make("CartPole-v0")) for _ in range(cfg.env.collector_env_num)],
cfg=cfg.env.manager
)
evaluator_env = BaseEnvManagerV2(
env_fn=[lambda: DingEnvWrapper(gym.make("CartPole-v0")) for _ in range(cfg.env.evaluator_env_num)],
cfg=cfg.env.manager
)
set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda)
model = DQN(**cfg.policy.model)
buffer_ = DequeBuffer(size=cfg.policy.other.replay_buffer.replay_buffer_size)
policy = DQNPolicy(cfg.policy, model=model)
reward_model = RndRewardModel(cfg.reward_model)
task.use(interaction_evaluator(cfg, policy.eval_mode, evaluator_env))
task.use(eps_greedy_handler(cfg))
task.use(StepCollector(cfg, policy.collect_mode, collector_env))
task.use(trainer(cfg, reward_model))
task.use(data_pusher(cfg, buffer_))
task.use(OffPolicyLearner(cfg, policy.learn_mode, buffer_, reward_model=reward_model))
task.use(CkptSaver(policy, cfg.exp_name, train_freq=100))
task.run()
if __name__ == "__main__":
main()