Spaces:
Sleeping
Sleeping
import gym | |
from ditk import logging | |
from ding.model import DQN | |
from ding.policy import DQNPolicy | |
from ding.reward_model import RndRewardModel | |
from ding.envs import DingEnvWrapper, BaseEnvManagerV2 | |
from ding.data import DequeBuffer | |
from ding.config import compile_config | |
from ding.framework import task | |
from ding.framework.context import OnlineRLContext | |
from ding.framework.middleware import OffPolicyLearner, StepCollector, interaction_evaluator, data_pusher, trainer, \ | |
eps_greedy_handler, CkptSaver | |
from ding.utils import set_pkg_seed | |
from dizoo.classic_control.cartpole.config.cartpole_dqn_rnd_config import main_config, create_config | |
def main(): | |
logging.getLogger().setLevel(logging.INFO) | |
cfg = compile_config(main_config, create_cfg=create_config, auto=True) | |
with task.start(async_mode=False, ctx=OnlineRLContext()): | |
collector_env = BaseEnvManagerV2( | |
env_fn=[lambda: DingEnvWrapper(gym.make("CartPole-v0")) for _ in range(cfg.env.collector_env_num)], | |
cfg=cfg.env.manager | |
) | |
evaluator_env = BaseEnvManagerV2( | |
env_fn=[lambda: DingEnvWrapper(gym.make("CartPole-v0")) for _ in range(cfg.env.evaluator_env_num)], | |
cfg=cfg.env.manager | |
) | |
set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda) | |
model = DQN(**cfg.policy.model) | |
buffer_ = DequeBuffer(size=cfg.policy.other.replay_buffer.replay_buffer_size) | |
policy = DQNPolicy(cfg.policy, model=model) | |
reward_model = RndRewardModel(cfg.reward_model) | |
task.use(interaction_evaluator(cfg, policy.eval_mode, evaluator_env)) | |
task.use(eps_greedy_handler(cfg)) | |
task.use(StepCollector(cfg, policy.collect_mode, collector_env)) | |
task.use(trainer(cfg, reward_model)) | |
task.use(data_pusher(cfg, buffer_)) | |
task.use(OffPolicyLearner(cfg, policy.learn_mode, buffer_, reward_model=reward_model)) | |
task.use(CkptSaver(policy, cfg.exp_name, train_freq=100)) | |
task.run() | |
if __name__ == "__main__": | |
main() | |