Spaces:
Sleeping
Sleeping
import gym | |
from ditk import logging | |
import torch | |
from ding.model import DQN | |
from ding.policy import SQLPolicy | |
from ding.envs import DingEnvWrapper, BaseEnvManagerV2 | |
from ding.data import DequeBuffer | |
from ding.config import compile_config | |
from ding.framework import task | |
from ding.framework.context import OnlineRLContext | |
from ding.framework.middleware import OffPolicyLearner, StepCollector, interaction_evaluator, \ | |
eps_greedy_handler, CkptSaver, eps_greedy_masker, sqil_data_pusher | |
from ding.utils import set_pkg_seed | |
from dizoo.classic_control.cartpole.config.cartpole_sql_config import main_config as ex_main_config | |
from dizoo.classic_control.cartpole.config.cartpole_sql_config import create_config as ex_create_config | |
from dizoo.classic_control.cartpole.config.cartpole_sqil_config import main_config, create_config | |
def main(): | |
logging.getLogger().setLevel(logging.INFO) | |
cfg = compile_config(main_config, create_cfg=create_config, auto=True) | |
expert_cfg = compile_config(ex_main_config, create_cfg=ex_create_config, auto=True) | |
# expert config must have the same `n_sample`. The line below ensure we do not need to modify the expert configs | |
expert_cfg.policy.collect.n_sample = cfg.policy.collect.n_sample | |
with task.start(async_mode=False, ctx=OnlineRLContext()): | |
collector_env = BaseEnvManagerV2( | |
env_fn=[lambda: DingEnvWrapper(gym.make("CartPole-v0")) for _ in range(cfg.env.collector_env_num)], | |
cfg=cfg.env.manager | |
) | |
expert_collector_env = BaseEnvManagerV2( | |
env_fn=[lambda: DingEnvWrapper(gym.make("CartPole-v0")) for _ in range(cfg.env.collector_env_num)], | |
cfg=cfg.env.manager | |
) | |
evaluator_env = BaseEnvManagerV2( | |
env_fn=[lambda: DingEnvWrapper(gym.make("CartPole-v0")) for _ in range(cfg.env.evaluator_env_num)], | |
cfg=cfg.env.manager | |
) | |
set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda) | |
model = DQN(**cfg.policy.model) | |
expert_model = DQN(**cfg.policy.model) | |
buffer_ = DequeBuffer(size=cfg.policy.other.replay_buffer.replay_buffer_size) | |
expert_buffer = DequeBuffer(size=cfg.policy.other.replay_buffer.replay_buffer_size) | |
policy = SQLPolicy(cfg.policy, model=model) | |
expert_policy = SQLPolicy(expert_cfg.policy, model=expert_model) | |
state_dict = torch.load(cfg.policy.collect.model_path, map_location='cpu') | |
expert_policy.collect_mode.load_state_dict(state_dict) | |
task.use(interaction_evaluator(cfg, policy.eval_mode, evaluator_env)) | |
task.use(eps_greedy_handler(cfg)) | |
task.use(StepCollector(cfg, policy.collect_mode, collector_env)) # agent data collector | |
task.use(sqil_data_pusher(cfg, buffer_, expert=False)) | |
task.use(eps_greedy_masker()) | |
task.use(StepCollector(cfg, expert_policy.collect_mode, expert_collector_env)) # expert data collector | |
task.use(sqil_data_pusher(cfg, expert_buffer, expert=True)) | |
task.use(OffPolicyLearner(cfg, policy.learn_mode, [(buffer_, 0.5), (expert_buffer, 0.5)])) | |
task.use(CkptSaver(policy, cfg.exp_name, train_freq=100)) | |
task.run() | |
if __name__ == "__main__": | |
main() | |