Spaces:
Sleeping
Sleeping
from ditk import logging | |
import torch | |
from ding.model import ContinuousQAC | |
from ding.policy import SQILSACPolicy | |
from ding.envs import BaseEnvManagerV2 | |
from ding.data import DequeBuffer | |
from ding.config import compile_config | |
from ding.framework import task | |
from ding.framework.context import OnlineRLContext | |
from ding.framework.middleware import OffPolicyLearner, StepCollector, interaction_evaluator, \ | |
CkptSaver, sqil_data_pusher, termination_checker | |
from ding.utils import set_pkg_seed | |
from dizoo.classic_control.pendulum.envs.pendulum_env import PendulumEnv | |
from dizoo.classic_control.pendulum.config.pendulum_sac_config import main_config as ex_main_config | |
from dizoo.classic_control.pendulum.config.pendulum_sac_config import create_config as ex_create_config | |
from dizoo.classic_control.pendulum.config.pendulum_sqil_sac_config import main_config, create_config | |
def main(): | |
logging.getLogger().setLevel(logging.INFO) | |
cfg = compile_config(main_config, create_cfg=create_config, auto=True) | |
expert_cfg = compile_config(ex_main_config, create_cfg=ex_create_config, auto=True) | |
# expert config must have the same `n_sample`. The line below ensure we do not need to modify the expert configs | |
expert_cfg.policy.collect.n_sample = cfg.policy.collect.n_sample | |
with task.start(async_mode=False, ctx=OnlineRLContext()): | |
collector_env = BaseEnvManagerV2( | |
env_fn=[lambda: PendulumEnv(cfg.env) for _ in range(cfg.env.collector_env_num)], cfg=cfg.env.manager | |
) | |
expert_collector_env = BaseEnvManagerV2( | |
env_fn=[lambda: PendulumEnv(cfg.env) for _ in range(cfg.env.collector_env_num)], cfg=cfg.env.manager | |
) | |
evaluator_env = BaseEnvManagerV2( | |
env_fn=[lambda: PendulumEnv(cfg.env) for _ in range(cfg.env.evaluator_env_num)], cfg=cfg.env.manager | |
) | |
set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda) | |
model = ContinuousQAC(**cfg.policy.model) | |
expert_model = ContinuousQAC(**cfg.policy.model) | |
buffer_ = DequeBuffer(size=cfg.policy.other.replay_buffer.replay_buffer_size) | |
expert_buffer = DequeBuffer(size=cfg.policy.other.replay_buffer.replay_buffer_size) | |
policy = SQILSACPolicy(cfg.policy, model=model) | |
expert_policy = SQILSACPolicy(expert_cfg.policy, model=expert_model) | |
state_dict = torch.load(cfg.policy.collect.model_path, map_location='cpu') | |
expert_policy.collect_mode.load_state_dict(state_dict) | |
task.use(interaction_evaluator(cfg, policy.eval_mode, evaluator_env)) | |
task.use( | |
StepCollector(cfg, policy.collect_mode, collector_env, random_collect_size=cfg.policy.random_collect_size) | |
) # agent data collector | |
task.use(sqil_data_pusher(cfg, buffer_, expert=False)) | |
task.use( | |
StepCollector( | |
cfg, | |
expert_policy.collect_mode, | |
expert_collector_env, | |
random_collect_size=cfg.policy.expert_random_collect_size | |
) | |
) # expert data collector | |
task.use(sqil_data_pusher(cfg, expert_buffer, expert=True)) | |
task.use(OffPolicyLearner(cfg, policy.learn_mode, [(buffer_, 0.5), (expert_buffer, 0.5)])) | |
task.use(CkptSaver(policy, cfg.exp_name, train_freq=100)) | |
task.use(termination_checker(max_train_iter=10000)) | |
task.run() | |
if __name__ == "__main__": | |
main() | |