Spaces:
Sleeping
Sleeping
from typing import TYPE_CHECKING, Callable, Union | |
from easydict import EasyDict | |
import treetensor.torch as ttorch | |
from ditk import logging | |
import numpy as np | |
from ding.policy import Policy | |
from ding.framework import task, OfflineRLContext, OnlineRLContext | |
def trainer(cfg: EasyDict, policy: Policy, log_freq: int = 100) -> Callable: | |
""" | |
Overview: | |
The middleware that executes a single training process. | |
Arguments: | |
- cfg (:obj:`EasyDict`): Config. | |
- policy (:obj:`Policy`): The policy to be trained in step-by-step mode. | |
- log_freq (:obj:`int`): The frequency (iteration) of showing log. | |
""" | |
if task.router.is_active and not task.has_role(task.role.LEARNER): | |
return task.void() | |
def _train(ctx: Union["OnlineRLContext", "OfflineRLContext"]): | |
""" | |
Input of ctx: | |
- train_data (:obj:`Dict`): The data used to update the network. It will train only if \ | |
the data is not empty. | |
- train_iter: (:obj:`int`): The training iteration count. The log will be printed once \ | |
it reachs certain values. | |
Output of ctx: | |
- train_output (:obj:`Dict`): The training output in the Dict format, including loss info. | |
""" | |
if ctx.train_data is None: | |
return | |
train_output = policy.forward(ctx.train_data) | |
if ctx.train_iter % log_freq == 0: | |
if isinstance(train_output, list): | |
train_output_loss = np.mean([item['total_loss'] for item in train_output]) | |
else: | |
train_output_loss = train_output['total_loss'] | |
if isinstance(ctx, OnlineRLContext): | |
logging.info( | |
'Training: Train Iter({})\tEnv Step({})\tLoss({:.3f})'.format( | |
ctx.train_iter, ctx.env_step, train_output_loss | |
) | |
) | |
elif isinstance(ctx, OfflineRLContext): | |
logging.info('Training: Train Iter({})\tLoss({:.3f})'.format(ctx.train_iter, train_output_loss)) | |
else: | |
raise TypeError("not supported ctx type: {}".format(type(ctx))) | |
ctx.train_iter += 1 | |
ctx.train_output = train_output | |
return _train | |
def multistep_trainer(policy: Policy, log_freq: int = 100) -> Callable: | |
""" | |
Overview: | |
The middleware that executes training for a target num of steps. | |
Arguments: | |
- policy (:obj:`Policy`): The policy specialized for multi-step training. | |
- log_freq (:obj:`int`): The frequency (iteration) of showing log. | |
""" | |
if task.router.is_active and not task.has_role(task.role.LEARNER): | |
return task.void() | |
last_log_iter = -1 | |
def _train(ctx: Union["OnlineRLContext", "OfflineRLContext"]): | |
""" | |
Input of ctx: | |
- train_data: The data used to update the network. | |
It will train only if the data is not empty. | |
- train_iter: (:obj:`int`): The training iteration count. | |
The log will be printed if it reachs certain values. | |
Output of ctx: | |
- train_output (:obj:`List[Dict]`): The training output listed by steps. | |
""" | |
if ctx.train_data is None: # no enough data from data fetcher | |
return | |
if hasattr(policy, "_device"): # For ppof policy | |
data = ctx.train_data.to(policy._device) | |
elif hasattr(policy, "get_attribute"): # For other policy | |
data = ctx.train_data.to(policy.get_attribute("device")) | |
else: | |
assert AttributeError("Policy should have attribution '_device'.") | |
train_output = policy.forward(data) | |
nonlocal last_log_iter | |
if ctx.train_iter - last_log_iter >= log_freq: | |
loss = np.mean([o['total_loss'] for o in train_output]) | |
if isinstance(ctx, OfflineRLContext): | |
logging.info('Training: Train Iter({})\tLoss({:.3f})'.format(ctx.train_iter, loss)) | |
else: | |
logging.info( | |
'Training: Train Iter({})\tEnv Step({})\tLoss({:.3f})'.format(ctx.train_iter, ctx.env_step, loss) | |
) | |
last_log_iter = ctx.train_iter | |
ctx.train_iter += len(train_output) | |
ctx.train_output = train_output | |
return _train | |
# TODO reward model | |