Spaces:
Sleeping
Sleeping
from typing import TYPE_CHECKING, Callable, List, Tuple, Union, Dict, Optional | |
from easydict import EasyDict | |
from collections import deque | |
from ding.framework import task | |
from ding.data import Buffer | |
from .functional import trainer, offpolicy_data_fetcher, reward_estimator, her_data_enhancer | |
if TYPE_CHECKING: | |
from ding.framework import Context, OnlineRLContext | |
from ding.policy import Policy | |
from ding.reward_model import BaseRewardModel | |
class OffPolicyLearner: | |
""" | |
Overview: | |
The class of the off-policy learner, including data fetching and model training. Use \ | |
the `__call__` method to execute the whole learning process. | |
""" | |
def __new__(cls, *args, **kwargs): | |
if task.router.is_active and not task.has_role(task.role.LEARNER): | |
return task.void() | |
return super(OffPolicyLearner, cls).__new__(cls) | |
def __init__( | |
self, | |
cfg: EasyDict, | |
policy: 'Policy', | |
buffer_: Union[Buffer, List[Tuple[Buffer, float]], Dict[str, Buffer]], | |
reward_model: Optional['BaseRewardModel'] = None, | |
log_freq: int = 100, | |
) -> None: | |
""" | |
Arguments: | |
- cfg (:obj:`EasyDict`): Config. | |
- policy (:obj:`Policy`): The policy to be trained. | |
- buffer (:obj:`Buffer`): The replay buffer to store the data for training. | |
- reward_model (:obj:`BaseRewardModel`): Additional reward estimator likes RND, ICM, etc. \ | |
default to None. | |
- log_freq (:obj:`int`): The frequency (iteration) of showing log. | |
""" | |
self.cfg = cfg | |
self._fetcher = task.wrap(offpolicy_data_fetcher(cfg, buffer_)) | |
self._trainer = task.wrap(trainer(cfg, policy, log_freq=log_freq)) | |
if reward_model is not None: | |
self._reward_estimator = task.wrap(reward_estimator(cfg, reward_model)) | |
else: | |
self._reward_estimator = None | |
def __call__(self, ctx: "OnlineRLContext") -> None: | |
""" | |
Output of ctx: | |
- train_output (:obj:`Deque`): The training output in deque. | |
""" | |
train_output_queue = [] | |
for _ in range(self.cfg.policy.learn.update_per_collect): | |
self._fetcher(ctx) | |
if ctx.train_data is None: | |
break | |
if self._reward_estimator: | |
self._reward_estimator(ctx) | |
self._trainer(ctx) | |
train_output_queue.append(ctx.train_output) | |
ctx.train_output = train_output_queue | |
class HERLearner: | |
""" | |
Overview: | |
The class of the learner with the Hindsight Experience Replay (HER). \ | |
Use the `__call__` method to execute the data featching and training \ | |
process. | |
""" | |
def __init__( | |
self, | |
cfg: EasyDict, | |
policy, | |
buffer_: Union[Buffer, List[Tuple[Buffer, float]], Dict[str, Buffer]], | |
her_reward_model, | |
) -> None: | |
""" | |
Arguments: | |
- cfg (:obj:`EasyDict`): Config. | |
- policy (:obj:`Policy`): The policy to be trained. | |
- buffer\_ (:obj:`Buffer`): The replay buffer to store the data for training. | |
- her_reward_model (:obj:`HerRewardModel`): HER reward model. | |
""" | |
self.cfg = cfg | |
self._fetcher = task.wrap(her_data_enhancer(cfg, buffer_, her_reward_model)) | |
self._trainer = task.wrap(trainer(cfg, policy)) | |
def __call__(self, ctx: "OnlineRLContext") -> None: | |
""" | |
Output of ctx: | |
- train_output (:obj:`Deque`): The deque of training output. | |
""" | |
train_output_queue = [] | |
for _ in range(self.cfg.policy.learn.update_per_collect): | |
self._fetcher(ctx) | |
if ctx.train_data is None: | |
break | |
self._trainer(ctx) | |
train_output_queue.append(ctx.train_output) | |
ctx.train_output = train_output_queue | |