Spaces:
Sleeping
Sleeping
import time | |
import torch | |
from hpc_rll.origin.td import dist_nstep_td_error, dist_nstep_td_data | |
from hpc_rll.rl_utils.td import DistNStepTD | |
from testbase import mean_relative_error, times | |
assert torch.cuda.is_available() | |
use_cuda = True | |
T = 128 | |
B = 128 | |
N = 128 | |
gamma = 0.95 | |
v_min = -10.0 | |
v_max = 10.0 | |
n_atom = 51 | |
def dntd_val(): | |
ori_dist = torch.randn(B, N, n_atom).abs() | |
ori_next_n_dist = torch.randn(B, N, n_atom).abs() | |
ori_action = torch.randint(0, N, size=(B, )) | |
ori_next_n_action = torch.randint(0, N, size=(B, )) | |
ori_reward = torch.randn(T, B) | |
ori_done = torch.randn(B) | |
ori_weight = torch.randn(B) | |
hpc_dist = ori_dist.clone().detach() | |
hpc_next_n_dist = ori_next_n_dist.clone().detach() | |
hpc_action = ori_action.clone().detach() | |
hpc_next_n_action = ori_next_n_action.clone().detach() | |
hpc_reward = ori_reward.clone().detach() | |
hpc_done = ori_done.clone().detach() | |
hpc_weight = ori_weight.clone().detach() | |
hpc_dntd = DistNStepTD(T, B, N, n_atom) | |
if use_cuda: | |
ori_dist = ori_dist.cuda() | |
ori_next_n_dist = ori_next_n_dist.cuda() | |
ori_action = ori_action.cuda() | |
ori_next_n_action = ori_next_n_action.cuda() | |
ori_reward = ori_reward.cuda() | |
ori_done = ori_done.cuda() | |
ori_weight = ori_weight.cuda() | |
hpc_dist = hpc_dist.cuda() | |
hpc_next_n_dist = hpc_next_n_dist.cuda() | |
hpc_action = hpc_action.cuda() | |
hpc_next_n_action = hpc_next_n_action.cuda() | |
hpc_reward = hpc_reward.cuda() | |
hpc_done = hpc_done.cuda() | |
hpc_weight = hpc_weight.cuda() | |
hpc_dntd = hpc_dntd.cuda() | |
ori_dist.requires_grad_(True) | |
ori_loss, ori_td_err = dist_nstep_td_error( | |
dist_nstep_td_data(ori_dist, ori_next_n_dist, ori_action, ori_next_n_action, ori_reward, ori_done, ori_weight), | |
gamma, v_min, v_max, n_atom, T | |
) | |
ori_loss = ori_loss.mean() | |
ori_loss.backward() | |
hpc_dist.requires_grad_(True) | |
hpc_loss, hpc_td_err = hpc_dntd( | |
hpc_dist, hpc_next_n_dist, hpc_action, hpc_next_n_action, hpc_reward, hpc_done, hpc_weight, gamma, v_min, v_max | |
) | |
hpc_loss = hpc_loss.mean() | |
hpc_loss.backward() | |
mre = mean_relative_error( | |
torch.flatten(ori_loss).cpu().detach().numpy(), | |
torch.flatten(hpc_loss).cpu().detach().numpy() | |
) | |
print("dntd fp mean_relative_error: " + str(mre)) | |
mre = mean_relative_error( | |
torch.flatten(ori_td_err).cpu().detach().numpy(), | |
torch.flatten(hpc_td_err).cpu().detach().numpy() | |
) | |
print("dntd fp td_err mean_relative_error: " + str(mre)) | |
mre = mean_relative_error( | |
torch.flatten(ori_dist.grad).cpu().detach().numpy(), | |
torch.flatten(hpc_dist.grad).cpu().detach().numpy() | |
) | |
print("dntd bp mean_relative_error: " + str(mre)) | |
def dntd_perf(): | |
ori_dist = torch.randn(B, N, n_atom).abs() | |
ori_next_n_dist = torch.randn(B, N, n_atom).abs() | |
ori_action = torch.randint(0, N, size=(B, )) | |
ori_next_n_action = torch.randint(0, N, size=(B, )) | |
ori_reward = torch.randn(T, B) | |
ori_done = torch.randn(B) | |
ori_weight = torch.randn(B) | |
hpc_dist = ori_dist.clone().detach() | |
hpc_next_n_dist = ori_next_n_dist.clone().detach() | |
hpc_action = ori_action.clone().detach() | |
hpc_next_n_action = ori_next_n_action.clone().detach() | |
hpc_reward = ori_reward.clone().detach() | |
hpc_done = ori_done.clone().detach() | |
hpc_weight = ori_weight.clone().detach() | |
hpc_dntd = DistNStepTD(T, B, N, n_atom) | |
if use_cuda: | |
ori_dist = ori_dist.cuda() | |
ori_next_n_dist = ori_next_n_dist.cuda() | |
ori_action = ori_action.cuda() | |
ori_next_n_action = ori_next_n_action.cuda() | |
ori_reward = ori_reward.cuda() | |
ori_done = ori_done.cuda() | |
ori_weight = ori_weight.cuda() | |
hpc_dist = hpc_dist.cuda() | |
hpc_next_n_dist = hpc_next_n_dist.cuda() | |
hpc_action = hpc_action.cuda() | |
hpc_next_n_action = hpc_next_n_action.cuda() | |
hpc_reward = hpc_reward.cuda() | |
hpc_done = hpc_done.cuda() | |
hpc_weight = hpc_weight.cuda() | |
hpc_dntd = hpc_dntd.cuda() | |
ori_dist.requires_grad_(True) | |
for i in range(times): | |
t = time.time() | |
ori_loss, ori_td_err = dist_nstep_td_error( | |
dist_nstep_td_data( | |
ori_dist, ori_next_n_dist, ori_action, ori_next_n_action, ori_reward, ori_done, ori_weight | |
), gamma, v_min, v_max, n_atom, T | |
) | |
ori_loss = ori_loss.mean() | |
ori_loss.backward() | |
if use_cuda: | |
torch.cuda.synchronize() | |
print('epoch: {}, origin dntd cost time: {}'.format(i, time.time() - t)) | |
hpc_dist.requires_grad_(True) | |
for i in range(times): | |
t = time.time() | |
hpc_loss, hpc_td_err = hpc_dntd( | |
hpc_dist, hpc_next_n_dist, hpc_action, hpc_next_n_action, hpc_reward, hpc_done, hpc_weight, gamma, v_min, | |
v_max | |
) | |
hpc_loss = hpc_loss.mean() | |
hpc_loss.backward() | |
if use_cuda: | |
torch.cuda.synchronize() | |
print('epoch: {}, hpc dntd cost time: {}'.format(i, time.time() - t)) | |
if __name__ == '__main__': | |
print( | |
"target problem: T = {}, B = {}, N = {}, gamma = {}, v_min = {}, v_max = {}, n_atom = {}".format( | |
T, B, N, gamma, v_min, v_max, n_atom | |
) | |
) | |
print("================run dntd validation test================") | |
dntd_val() | |
print("================run dntd performance test================") | |
dntd_perf() | |