Spaces:
Sleeping
Sleeping
import time | |
import torch | |
from hpc_rll.origin.gae import gae, gae_data | |
from hpc_rll.rl_utils.gae import GAE | |
from testbase import mean_relative_error, times | |
assert torch.cuda.is_available() | |
use_cuda = True | |
T = 1024 | |
B = 64 | |
def gae_val(): | |
value = torch.randn(T + 1, B) | |
reward = torch.randn(T, B) | |
hpc_gae = GAE(T, B) | |
if use_cuda: | |
value = value.cuda() | |
reward = reward.cuda() | |
hpc_gae = hpc_gae.cuda() | |
ori_adv = gae(gae_data(value, reward)) | |
hpc_adv = hpc_gae(value, reward) | |
if use_cuda: | |
torch.cuda.synchronize() | |
mre = mean_relative_error( | |
torch.flatten(ori_adv).cpu().detach().numpy(), | |
torch.flatten(hpc_adv).cpu().detach().numpy() | |
) | |
print("gae mean_relative_error: " + str(mre)) | |
def gae_perf(): | |
value = torch.randn(T + 1, B) | |
reward = torch.randn(T, B) | |
hpc_gae = GAE(T, B) | |
if use_cuda: | |
value = value.cuda() | |
reward = reward.cuda() | |
hpc_gae = hpc_gae.cuda() | |
for i in range(times): | |
t = time.time() | |
adv = gae(gae_data(value, reward)) | |
if use_cuda: | |
torch.cuda.synchronize() | |
print('epoch: {}, original gae cost time: {}'.format(i, time.time() - t)) | |
for i in range(times): | |
t = time.time() | |
hpc_adv = hpc_gae(value, reward) | |
if use_cuda: | |
torch.cuda.synchronize() | |
print('epoch: {}, hpc gae cost time: {}'.format(i, time.time() - t)) | |
if __name__ == '__main__': | |
print("target problem: T = {}, B = {}".format(T, B)) | |
print("================run gae validation test================") | |
gae_val() | |
print("================run gae performance test================") | |
gae_perf() | |