Spaces:
Sleeping
Sleeping
from typing import Optional, Dict, Union, List | |
import math | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.distributions import Normal, Independent | |
from ding.torch_utils import fc_block, noise_block, NoiseLinearLayer, MLP, PopArt, conv1d_block | |
from ding.rl_utils import beta_function_map | |
from ding.utils import lists_to_dicts, SequenceType | |
class DiscreteHead(nn.Module): | |
""" | |
Overview: | |
The ``DiscreteHead`` is used to generate discrete actions logit or Q-value logit, \ | |
which is often used in q-learning algorithms or actor-critic algorithms for discrete action space. | |
Interfaces: | |
``__init__``, ``forward``. | |
""" | |
def __init__( | |
self, | |
hidden_size: int, | |
output_size: int, | |
layer_num: int = 1, | |
activation: Optional[nn.Module] = nn.ReLU(), | |
norm_type: Optional[str] = None, | |
dropout: Optional[float] = None, | |
noise: Optional[bool] = False, | |
) -> None: | |
""" | |
Overview: | |
Init the ``DiscreteHead`` layers according to the provided arguments. | |
Arguments: | |
- hidden_size (:obj:`int`): The ``hidden_size`` of the MLP connected to ``DiscreteHead``. | |
- output_size (:obj:`int`): The number of outputs. | |
- layer_num (:obj:`int`): The number of layers used in the network to compute Q value output. | |
- activation (:obj:`nn.Module`): The type of activation function to use in MLP. \ | |
If ``None``, then default set activation to ``nn.ReLU()``. Default ``None``. | |
- norm_type (:obj:`str`): The type of normalization to use. See ``ding.torch_utils.network.fc_block`` \ | |
for more details. Default ``None``. | |
- dropout (:obj:`float`): The dropout rate, default set to None. | |
- noise (:obj:`bool`): Whether use ``NoiseLinearLayer`` as ``layer_fn`` in Q networks' MLP. \ | |
Default ``False``. | |
""" | |
super(DiscreteHead, self).__init__() | |
layer = NoiseLinearLayer if noise else nn.Linear | |
block = noise_block if noise else fc_block | |
self.Q = nn.Sequential( | |
MLP( | |
hidden_size, | |
hidden_size, | |
hidden_size, | |
layer_num, | |
layer_fn=layer, | |
activation=activation, | |
use_dropout=dropout is not None, | |
dropout_probability=dropout, | |
norm_type=norm_type | |
), block(hidden_size, output_size) | |
) | |
def forward(self, x: torch.Tensor) -> Dict: | |
""" | |
Overview: | |
Use encoded embedding tensor to run MLP with ``DiscreteHead`` and return the prediction dictionary. | |
Arguments: | |
- x (:obj:`torch.Tensor`): Tensor containing input embedding. | |
Returns: | |
- outputs (:obj:`Dict`): Dict containing keyword ``logit`` (:obj:`torch.Tensor`). | |
Shapes: | |
- x: :math:`(B, N)`, where ``B = batch_size`` and ``N = hidden_size``. | |
- logit: :math:`(B, M)`, where ``M = output_size``. | |
Examples: | |
>>> head = DiscreteHead(64, 64) | |
>>> inputs = torch.randn(4, 64) | |
>>> outputs = head(inputs) | |
>>> assert isinstance(outputs, dict) and outputs['logit'].shape == torch.Size([4, 64]) | |
""" | |
logit = self.Q(x) | |
return {'logit': logit} | |
class DistributionHead(nn.Module): | |
""" | |
Overview: | |
The ``DistributionHead`` is used to generate distribution for Q-value. | |
This module is used in C51 algorithm. | |
Interfaces: | |
``__init__``, ``forward``. | |
""" | |
def __init__( | |
self, | |
hidden_size: int, | |
output_size: int, | |
layer_num: int = 1, | |
n_atom: int = 51, | |
v_min: float = -10, | |
v_max: float = 10, | |
activation: Optional[nn.Module] = nn.ReLU(), | |
norm_type: Optional[str] = None, | |
noise: Optional[bool] = False, | |
eps: Optional[float] = 1e-6, | |
) -> None: | |
""" | |
Overview: | |
Init the ``DistributionHead`` layers according to the provided arguments. | |
Arguments: | |
- hidden_size (:obj:`int`): The ``hidden_size`` of the MLP connected to ``DistributionHead``. | |
- output_size (:obj:`int`): The number of outputs. | |
- layer_num (:obj:`int`): The number of layers used in the network to compute Q value distribution. | |
- n_atom (:obj:`int`): The number of atoms (discrete supports). Default is ``51``. | |
- v_min (:obj:`int`): Min value of atoms. Default is ``-10``. | |
- v_max (:obj:`int`): Max value of atoms. Default is ``10``. | |
- activation (:obj:`nn.Module`): The type of activation function to use in MLP. \ | |
If ``None``, then default set activation to ``nn.ReLU()``. Default ``None``. | |
- norm_type (:obj:`str`): The type of normalization to use. See ``ding.torch_utils.network.fc_block`` \ | |
for more details. Default ``None``. | |
- noise (:obj:`bool`): Whether use ``NoiseLinearLayer`` as ``layer_fn`` in Q networks' MLP. \ | |
Default ``False``. | |
- eps (:obj:`float`): Small constant used for numerical stability. | |
""" | |
super(DistributionHead, self).__init__() | |
layer = NoiseLinearLayer if noise else nn.Linear | |
block = noise_block if noise else fc_block | |
self.Q = nn.Sequential( | |
MLP( | |
hidden_size, | |
hidden_size, | |
hidden_size, | |
layer_num, | |
layer_fn=layer, | |
activation=activation, | |
norm_type=norm_type | |
), block(hidden_size, output_size * n_atom) | |
) | |
self.output_size = output_size | |
self.n_atom = n_atom | |
self.v_min = v_min | |
self.v_max = v_max | |
self.eps = eps # for numerical stability | |
def forward(self, x: torch.Tensor) -> Dict: | |
""" | |
Overview: | |
Use encoded embedding tensor to run MLP with ``DistributionHead`` and return the prediction dictionary. | |
Arguments: | |
- x (:obj:`torch.Tensor`): Tensor containing input embedding. | |
Returns: | |
- outputs (:obj:`Dict`): Dict containing keywords ``logit`` (:obj:`torch.Tensor`) and \ | |
``distribution`` (:obj:`torch.Tensor`). | |
Shapes: | |
- x: :math:`(B, N)`, where ``B = batch_size`` and ``N = hidden_size``. | |
- logit: :math:`(B, M)`, where ``M = output_size``. | |
- distribution: :math:`(B, M, n_atom)`. | |
Examples: | |
>>> head = DistributionHead(64, 64) | |
>>> inputs = torch.randn(4, 64) | |
>>> outputs = head(inputs) | |
>>> assert isinstance(outputs, dict) | |
>>> assert outputs['logit'].shape == torch.Size([4, 64]) | |
>>> # default n_atom is 51 | |
>>> assert outputs['distribution'].shape == torch.Size([4, 64, 51]) | |
""" | |
q = self.Q(x) | |
q = q.view(*q.shape[:-1], self.output_size, self.n_atom) | |
dist = torch.softmax(q, dim=-1) + self.eps | |
q = dist * torch.linspace(self.v_min, self.v_max, self.n_atom).to(x) | |
q = q.sum(-1) | |
return {'logit': q, 'distribution': dist} | |
class BranchingHead(nn.Module): | |
""" | |
Overview: | |
The ``BranchingHead`` is used to generate Q-value with different branches. | |
This module is used in Branch DQN. | |
Interfaces: | |
``__init__``, ``forward``. | |
""" | |
def __init__( | |
self, | |
hidden_size: int, | |
num_branches: int = 0, | |
action_bins_per_branch: int = 2, | |
layer_num: int = 1, | |
a_layer_num: Optional[int] = None, | |
v_layer_num: Optional[int] = None, | |
norm_type: Optional[str] = None, | |
activation: Optional[nn.Module] = nn.ReLU(), | |
noise: Optional[bool] = False, | |
) -> None: | |
""" | |
Overview: | |
Init the ``BranchingHead`` layers according to the provided arguments. \ | |
This head achieves a linear increase of the number of network outputs \ | |
with the number of degrees of freedom by allowing a level of independence for each individual action. | |
Therefore, this head is suitable for high dimensional action Spaces. | |
Arguments: | |
- hidden_size (:obj:`int`): The ``hidden_size`` of the MLP connected to ``BranchingHead``. | |
- num_branches (:obj:`int`): The number of branches, which is equivalent to the action dimension. | |
- action_bins_per_branch (:obj:int): The number of action bins in each dimension. | |
- layer_num (:obj:`int`): The number of layers used in the network to compute Advantage and Value output. | |
- a_layer_num (:obj:`int`): The number of layers used in the network to compute Advantage output. | |
- v_layer_num (:obj:`int`): The number of layers used in the network to compute Value output. | |
- output_size (:obj:`int`): The number of outputs. | |
- norm_type (:obj:`str`): The type of normalization to use. See ``ding.torch_utils.network.fc_block`` \ | |
for more details. Default ``None``. | |
- activation (:obj:`nn.Module`): The type of activation function to use in MLP. \ | |
If ``None``, then default set activation to ``nn.ReLU()``. Default ``None``. | |
- noise (:obj:`bool`): Whether use ``NoiseLinearLayer`` as ``layer_fn`` in Q networks' MLP. \ | |
Default ``False``. | |
""" | |
super(BranchingHead, self).__init__() | |
if a_layer_num is None: | |
a_layer_num = layer_num | |
if v_layer_num is None: | |
v_layer_num = layer_num | |
self.num_branches = num_branches | |
self.action_bins_per_branch = action_bins_per_branch | |
layer = NoiseLinearLayer if noise else nn.Linear | |
block = noise_block if noise else fc_block | |
# value network | |
self.V = nn.Sequential( | |
MLP( | |
hidden_size, | |
hidden_size, | |
hidden_size, | |
v_layer_num, | |
layer_fn=layer, | |
activation=activation, | |
norm_type=norm_type | |
), block(hidden_size, 1) | |
) | |
# action branching network | |
action_output_dim = action_bins_per_branch | |
self.branches = nn.ModuleList( | |
[ | |
nn.Sequential( | |
MLP( | |
hidden_size, | |
hidden_size, | |
hidden_size, | |
a_layer_num, | |
layer_fn=layer, | |
activation=activation, | |
norm_type=norm_type | |
), block(hidden_size, action_output_dim) | |
) for _ in range(self.num_branches) | |
] | |
) | |
def forward(self, x: torch.Tensor) -> Dict: | |
""" | |
Overview: | |
Use encoded embedding tensor to run MLP with ``BranchingHead`` and return the prediction dictionary. | |
Arguments: | |
- x (:obj:`torch.Tensor`): Tensor containing input embedding. | |
Returns: | |
- outputs (:obj:`Dict`): Dict containing keyword ``logit`` (:obj:`torch.Tensor`). | |
Shapes: | |
- x: :math:`(B, N)`, where ``B = batch_size`` and ``N = hidden_size``. | |
- logit: :math:`(B, M)`, where ``M = output_size``. | |
Examples: | |
>>> head = BranchingHead(64, 5, 2) | |
>>> inputs = torch.randn(4, 64) | |
>>> outputs = head(inputs) | |
>>> assert isinstance(outputs, dict) and outputs['logit'].shape == torch.Size([4, 5, 2]) | |
""" | |
value_out = self.V(x) | |
value_out = torch.unsqueeze(value_out, 1) | |
action_out = [] | |
for b in self.branches: | |
action_out.append(b(x)) | |
action_scores = torch.stack(action_out, 1) | |
# From the paper, this implementation performs better than both the naive alternative (Q = V + A) \ | |
# and the local maximum reduction method (Q = V + max(A)). | |
action_scores = action_scores - torch.mean(action_scores, 2, keepdim=True) | |
logits = value_out + action_scores | |
return {'logit': logits} | |
class RainbowHead(nn.Module): | |
""" | |
Overview: | |
The ``RainbowHead`` is used to generate distribution of Q-value. | |
This module is used in Rainbow DQN. | |
Interfaces: | |
``__init__``, ``forward``. | |
""" | |
def __init__( | |
self, | |
hidden_size: int, | |
output_size: int, | |
layer_num: int = 1, | |
n_atom: int = 51, | |
v_min: float = -10, | |
v_max: float = 10, | |
activation: Optional[nn.Module] = nn.ReLU(), | |
norm_type: Optional[str] = None, | |
noise: Optional[bool] = True, | |
eps: Optional[float] = 1e-6, | |
) -> None: | |
""" | |
Overview: | |
Init the ``RainbowHead`` layers according to the provided arguments. | |
Arguments: | |
- hidden_size (:obj:`int`): The ``hidden_size`` of the MLP connected to ``RainbowHead``. | |
- output_size (:obj:`int`): The number of outputs. | |
- layer_num (:obj:`int`): The number of layers used in the network to compute Q value output. | |
- n_atom (:obj:`int`): The number of atoms (discrete supports). Default is ``51``. | |
- v_min (:obj:`int`): Min value of atoms. Default is ``-10``. | |
- v_max (:obj:`int`): Max value of atoms. Default is ``10``. | |
- activation (:obj:`nn.Module`): The type of activation function to use in MLP. \ | |
If ``None``, then default set activation to ``nn.ReLU()``. Default ``None``. | |
- norm_type (:obj:`str`): The type of normalization to use. See ``ding.torch_utils.network.fc_block`` \ | |
for more details. Default ``None``. | |
- noise (:obj:`bool`): Whether use ``NoiseLinearLayer`` as ``layer_fn`` in Q networks' MLP. \ | |
Default ``False``. | |
- eps (:obj:`float`): Small constant used for numerical stability. | |
""" | |
super(RainbowHead, self).__init__() | |
layer = NoiseLinearLayer if noise else nn.Linear | |
block = noise_block if noise else fc_block | |
self.A = nn.Sequential( | |
MLP( | |
hidden_size, | |
hidden_size, | |
hidden_size, | |
layer_num, | |
layer_fn=layer, | |
activation=activation, | |
norm_type=norm_type | |
), block(hidden_size, output_size * n_atom) | |
) | |
self.Q = nn.Sequential( | |
MLP( | |
hidden_size, | |
hidden_size, | |
hidden_size, | |
layer_num, | |
layer_fn=layer, | |
activation=activation, | |
norm_type=norm_type | |
), block(hidden_size, n_atom) | |
) | |
self.output_size = output_size | |
self.n_atom = n_atom | |
self.v_min = v_min | |
self.v_max = v_max | |
self.eps = eps | |
def forward(self, x: torch.Tensor) -> Dict: | |
""" | |
Overview: | |
Use encoded embedding tensor to run MLP with ``RainbowHead`` and return the prediction dictionary. | |
Arguments: | |
- x (:obj:`torch.Tensor`): Tensor containing input embedding. | |
Returns: | |
- outputs (:obj:`Dict`): Dict containing keywords ``logit`` (:obj:`torch.Tensor`) and \ | |
``distribution`` (:obj:`torch.Tensor`). | |
Shapes: | |
- x: :math:`(B, N)`, where ``B = batch_size`` and ``N = hidden_size``. | |
- logit: :math:`(B, M)`, where ``M = output_size``. | |
- distribution: :math:`(B, M, n_atom)`. | |
Examples: | |
>>> head = RainbowHead(64, 64) | |
>>> inputs = torch.randn(4, 64) | |
>>> outputs = head(inputs) | |
>>> assert isinstance(outputs, dict) | |
>>> assert outputs['logit'].shape == torch.Size([4, 64]) | |
>>> # default n_atom is 51 | |
>>> assert outputs['distribution'].shape == torch.Size([4, 64, 51]) | |
""" | |
a = self.A(x) | |
q = self.Q(x) | |
a = a.view(*a.shape[:-1], self.output_size, self.n_atom) | |
q = q.view(*q.shape[:-1], 1, self.n_atom) | |
q = q + a - a.mean(dim=-2, keepdim=True) | |
dist = torch.softmax(q, dim=-1) + self.eps | |
q = dist * torch.linspace(self.v_min, self.v_max, self.n_atom).to(x) | |
q = q.sum(-1) | |
return {'logit': q, 'distribution': dist} | |
class QRDQNHead(nn.Module): | |
""" | |
Overview: | |
The ``QRDQNHead`` (Quantile Regression DQN) is used to output action quantiles. | |
Interfaces: | |
``__init__``, ``forward``. | |
""" | |
def __init__( | |
self, | |
hidden_size: int, | |
output_size: int, | |
layer_num: int = 1, | |
num_quantiles: int = 32, | |
activation: Optional[nn.Module] = nn.ReLU(), | |
norm_type: Optional[str] = None, | |
noise: Optional[bool] = False, | |
) -> None: | |
""" | |
Overview: | |
Init the ``QRDQNHead`` layers according to the provided arguments. | |
Arguments: | |
- hidden_size (:obj:`int`): The ``hidden_size`` of the MLP connected to ``QRDQNHead``. | |
- output_size (:obj:`int`): The number of outputs. | |
- layer_num (:obj:`int`): The number of layers used in the network to compute Q value output. | |
- num_quantiles (:obj:`int`): The number of quantiles. Default is ``32``. | |
- activation (:obj:`nn.Module`): The type of activation function to use in MLP. \ | |
If ``None``, then default set activation to ``nn.ReLU()``. Default ``None``. | |
- norm_type (:obj:`str`): The type of normalization to use. See ``ding.torch_utils.network.fc_block`` \ | |
for more details. Default ``None``. | |
- noise (:obj:`bool`): Whether use ``NoiseLinearLayer`` as ``layer_fn`` in Q networks' MLP. \ | |
Default ``False``. | |
""" | |
super(QRDQNHead, self).__init__() | |
layer = NoiseLinearLayer if noise else nn.Linear | |
block = noise_block if noise else fc_block | |
self.Q = nn.Sequential( | |
MLP( | |
hidden_size, | |
hidden_size, | |
hidden_size, | |
layer_num, | |
layer_fn=layer, | |
activation=activation, | |
norm_type=norm_type | |
), block(hidden_size, output_size * num_quantiles) | |
) | |
self.num_quantiles = num_quantiles | |
self.output_size = output_size | |
def forward(self, x: torch.Tensor) -> Dict: | |
""" | |
Overview: | |
Use encoded embedding tensor to run MLP with ``QRDQNHead`` and return the prediction dictionary. | |
Arguments: | |
- x (:obj:`torch.Tensor`): Tensor containing input embedding. | |
Returns: | |
- outputs (:obj:`Dict`): Dict containing keywords ``logit`` (:obj:`torch.Tensor`), \ | |
``q`` (:obj:`torch.Tensor`), and ``tau`` (:obj:`torch.Tensor`). | |
Shapes: | |
- x: :math:`(B, N)`, where ``B = batch_size`` and ``N = hidden_size``. | |
- logit: :math:`(B, M)`, where ``M = output_size``. | |
- q: :math:`(B, M, num_quantiles)`. | |
- tau: :math:`(B, M, 1)`. | |
Examples: | |
>>> head = QRDQNHead(64, 64) | |
>>> inputs = torch.randn(4, 64) | |
>>> outputs = head(inputs) | |
>>> assert isinstance(outputs, dict) | |
>>> assert outputs['logit'].shape == torch.Size([4, 64]) | |
>>> # default num_quantiles is 32 | |
>>> assert outputs['q'].shape == torch.Size([4, 64, 32]) | |
>>> assert outputs['tau'].shape == torch.Size([4, 32, 1]) | |
""" | |
q = self.Q(x) | |
q = q.view(*q.shape[:-1], self.output_size, self.num_quantiles) | |
logit = q.mean(-1) | |
tau = torch.linspace(0, 1, self.num_quantiles + 1) | |
tau = ((tau[:-1] + tau[1:]) / 2).view(1, -1, 1).repeat(q.shape[0], 1, 1).to(q) | |
return {'logit': logit, 'q': q, 'tau': tau} | |
class QuantileHead(nn.Module): | |
""" | |
Overview: | |
The ``QuantileHead`` is used to output action quantiles. | |
This module is used in IQN. | |
Interfaces: | |
``__init__``, ``forward``, ``quantile_net``. | |
.. note:: | |
The difference between ``QuantileHead`` and ``QRDQNHead`` is that ``QuantileHead`` models the \ | |
state-action quantile function as a mapping from state-actions and samples from some base distribution \ | |
while ``QRDQNHead`` approximates random returns by a uniform mixture of Diracs functions. | |
""" | |
def __init__( | |
self, | |
hidden_size: int, | |
output_size: int, | |
layer_num: int = 1, | |
num_quantiles: int = 32, | |
quantile_embedding_size: int = 128, | |
beta_function_type: Optional[str] = 'uniform', | |
activation: Optional[nn.Module] = nn.ReLU(), | |
norm_type: Optional[str] = None, | |
noise: Optional[bool] = False, | |
) -> None: | |
""" | |
Overview: | |
Init the ``QuantileHead`` layers according to the provided arguments. | |
Arguments: | |
- hidden_size (:obj:`int`): The ``hidden_size`` of the MLP connected to ``QuantileHead``. | |
- output_size (:obj:`int`): The number of outputs. | |
- layer_num (:obj:`int`): The number of layers used in the network to compute Q value output. | |
- num_quantiles (:obj:`int`): The number of quantiles. | |
- quantile_embedding_size (:obj:`int`): The embedding size of a quantile. | |
- beta_function_type (:obj:`str`): Type of beta function. See ``ding.rl_utils.beta_function.py`` \ | |
for more details. Default is ``uniform``. | |
- activation (:obj:`nn.Module`): The type of activation function to use in MLP. \ | |
If ``None``, then default set activation to ``nn.ReLU()``. Default ``None``. | |
- norm_type (:obj:`str`): The type of normalization to use. See ``ding.torch_utils.network.fc_block`` \ | |
for more details. Default ``None``. | |
- noise (:obj:`bool`): Whether use ``NoiseLinearLayer`` as ``layer_fn`` in Q networks' MLP. \ | |
Default ``False``. | |
""" | |
super(QuantileHead, self).__init__() | |
layer = NoiseLinearLayer if noise else nn.Linear | |
block = noise_block if noise else fc_block | |
self.Q = nn.Sequential( | |
MLP( | |
hidden_size, | |
hidden_size, | |
hidden_size, | |
layer_num, | |
layer_fn=layer, | |
activation=activation, | |
norm_type=norm_type | |
), block(hidden_size, output_size) | |
) | |
self.num_quantiles = num_quantiles | |
self.quantile_embedding_size = quantile_embedding_size | |
self.output_size = output_size | |
self.iqn_fc = nn.Linear(self.quantile_embedding_size, hidden_size) | |
self.beta_function = beta_function_map[beta_function_type] | |
def quantile_net(self, quantiles: torch.Tensor) -> torch.Tensor: | |
""" | |
Overview: | |
Deterministic parametric function trained to reparameterize samples from a base distribution. \ | |
By repeated Bellman update iterations of Q-learning, the optimal action-value function is estimated. | |
Arguments: | |
- x (:obj:`torch.Tensor`): The encoded embedding tensor of parametric sample. | |
Returns: | |
- quantile_net (:obj:`torch.Tensor`): Quantile network output tensor after reparameterization. | |
Shapes: | |
- quantile_net :math:`(quantile_embedding_size, M)`, where ``M = output_size``. | |
Examples: | |
>>> head = QuantileHead(64, 64) | |
>>> quantiles = torch.randn(128,1) | |
>>> qn_output = head.quantile_net(quantiles) | |
>>> assert isinstance(qn_output, torch.Tensor) | |
>>> # default quantile_embedding_size: int = 128, | |
>>> assert qn_output.shape == torch.Size([128, 64]) | |
""" | |
quantile_net = quantiles.repeat([1, self.quantile_embedding_size]) | |
quantile_net = torch.cos( | |
torch.arange(1, self.quantile_embedding_size + 1, 1).to(quantiles) * math.pi * quantile_net | |
) | |
quantile_net = self.iqn_fc(quantile_net) | |
quantile_net = F.relu(quantile_net) | |
return quantile_net | |
def forward(self, x: torch.Tensor, num_quantiles: Optional[int] = None) -> Dict: | |
""" | |
Overview: | |
Use encoded embedding tensor to run MLP with ``QuantileHead`` and return the prediction dictionary. | |
Arguments: | |
- x (:obj:`torch.Tensor`): Tensor containing input embedding. | |
Returns: | |
- outputs (:obj:`Dict`): Dict containing keywords ``logit`` (:obj:`torch.Tensor`), \ | |
``q`` (:obj:`torch.Tensor`), and ``quantiles`` (:obj:`torch.Tensor`). | |
Shapes: | |
- x: :math:`(B, N)`, where ``B = batch_size`` and ``N = hidden_size``. | |
- logit: :math:`(B, M)`, where ``M = output_size``. | |
- q: :math:`(num_quantiles, B, M)`. | |
- quantiles: :math:`(quantile_embedding_size, 1)`. | |
Examples: | |
>>> head = QuantileHead(64, 64) | |
>>> inputs = torch.randn(4, 64) | |
>>> outputs = head(inputs) | |
>>> assert isinstance(outputs, dict) | |
>>> assert outputs['logit'].shape == torch.Size([4, 64]) | |
>>> # default num_quantiles is 32 | |
>>> assert outputs['q'].shape == torch.Size([32, 4, 64]) | |
>>> assert outputs['quantiles'].shape == torch.Size([128, 1]) | |
""" | |
if num_quantiles is None: | |
num_quantiles = self.num_quantiles | |
batch_size = x.shape[0] | |
q_quantiles = torch.FloatTensor(num_quantiles * batch_size, 1).uniform_(0, 1).to(x) | |
logit_quantiles = torch.FloatTensor(num_quantiles * batch_size, 1).uniform_(0, 1).to(x) | |
logit_quantiles = self.beta_function(logit_quantiles) | |
q_quantile_net = self.quantile_net(q_quantiles) | |
logit_quantile_net = self.quantile_net(logit_quantiles) | |
x = x.repeat(num_quantiles, 1) | |
q_x = x * q_quantile_net # 4*32,64 | |
logit_x = x * logit_quantile_net | |
q = self.Q(q_x).reshape(num_quantiles, batch_size, -1) | |
logit = self.Q(logit_x).reshape(num_quantiles, batch_size, -1).mean(0) | |
return {'logit': logit, 'q': q, 'quantiles': q_quantiles} | |
class FQFHead(nn.Module): | |
""" | |
Overview: | |
The ``FQFHead`` is used to output action quantiles. | |
This module is used in FQF. | |
Interfaces: | |
``__init__``, ``forward``, ``quantile_net``. | |
.. note:: | |
The implementation of FQFHead is based on the paper https://arxiv.org/abs/1911.02140. | |
The difference between FQFHead and QuantileHead is that, in FQF, \ | |
N adjustable quantile values for N adjustable quantile fractions are estimated to approximate \ | |
the quantile function. The distribution of the return is approximated by a weighted mixture of N \ | |
Diracs functions. While in IQN, the state-action quantile function is modeled as a mapping from \ | |
state-actions and samples from some base distribution. | |
""" | |
def __init__( | |
self, | |
hidden_size: int, | |
output_size: int, | |
layer_num: int = 1, | |
num_quantiles: int = 32, | |
quantile_embedding_size: int = 128, | |
activation: Optional[nn.Module] = nn.ReLU(), | |
norm_type: Optional[str] = None, | |
noise: Optional[bool] = False, | |
) -> None: | |
""" | |
Overview: | |
Init the ``FQFHead`` layers according to the provided arguments. | |
Arguments: | |
- hidden_size (:obj:`int`): The ``hidden_size`` of the MLP connected to ``FQFHead``. | |
- output_size (:obj:`int`): The number of outputs. | |
- layer_num (:obj:`int`): The number of layers used in the network to compute Q value output. | |
- num_quantiles (:obj:`int`): The number of quantiles. | |
- quantile_embedding_size (:obj:`int`): The embedding size of a quantile. | |
- activation (:obj:`nn.Module`): The type of activation function to use in MLP. \ | |
If ``None``, then default set activation to ``nn.ReLU()``. Default ``None``. | |
- norm_type (:obj:`str`): The type of normalization to use. See ``ding.torch_utils.network.fc_block`` \ | |
for more details. Default ``None``. | |
- noise (:obj:`bool`): Whether use ``NoiseLinearLayer`` as ``layer_fn`` in Q networks' MLP. \ | |
Default ``False``. | |
""" | |
super(FQFHead, self).__init__() | |
layer = NoiseLinearLayer if noise else nn.Linear | |
block = noise_block if noise else fc_block | |
self.Q = nn.Sequential( | |
MLP( | |
hidden_size, | |
hidden_size, | |
hidden_size, | |
layer_num, | |
layer_fn=layer, | |
activation=activation, | |
norm_type=norm_type | |
), block(hidden_size, output_size) | |
) | |
self.num_quantiles = num_quantiles | |
self.quantile_embedding_size = quantile_embedding_size | |
self.output_size = output_size | |
self.fqf_fc = nn.Sequential(nn.Linear(self.quantile_embedding_size, hidden_size), nn.ReLU()) | |
self.register_buffer( | |
'sigma_pi', | |
torch.arange(1, self.quantile_embedding_size + 1, 1).view(1, 1, self.quantile_embedding_size) * math.pi | |
) | |
# initialize weights_xavier of quantiles_proposal network | |
# NOTE(rjy): quantiles_proposal network mean fraction proposal network | |
quantiles_proposal_fc = nn.Linear(hidden_size, num_quantiles) | |
torch.nn.init.xavier_uniform_(quantiles_proposal_fc.weight, gain=0.01) | |
torch.nn.init.constant_(quantiles_proposal_fc.bias, 0) | |
self.quantiles_proposal = nn.Sequential(quantiles_proposal_fc, nn.LogSoftmax(dim=1)) | |
def quantile_net(self, quantiles: torch.Tensor) -> torch.Tensor: | |
""" | |
Overview: | |
Deterministic parametric function trained to reparameterize samples from the quantiles_proposal network. \ | |
By repeated Bellman update iterations of Q-learning, the optimal action-value function is estimated. | |
Arguments: | |
- x (:obj:`torch.Tensor`): The encoded embedding tensor of parametric sample. | |
Returns: | |
- quantile_net (:obj:`torch.Tensor`): Quantile network output tensor after reparameterization. | |
Examples: | |
>>> head = FQFHead(64, 64) | |
>>> quantiles = torch.randn(4,32) | |
>>> qn_output = head.quantile_net(quantiles) | |
>>> assert isinstance(qn_output, torch.Tensor) | |
>>> # default quantile_embedding_size: int = 128, | |
>>> assert qn_output.shape == torch.Size([4, 32, 64]) | |
""" | |
batch_size, num_quantiles = quantiles.shape[:2] | |
quantile_net = torch.cos(self.sigma_pi.to(quantiles) * quantiles.view(batch_size, num_quantiles, 1)) | |
quantile_net = self.fqf_fc(quantile_net) # (batch_size, num_quantiles, hidden_size) | |
return quantile_net | |
def forward(self, x: torch.Tensor, num_quantiles: Optional[int] = None) -> Dict: | |
""" | |
Overview: | |
Use encoded embedding tensor to run MLP with ``FQFHead`` and return the prediction dictionary. | |
Arguments: | |
- x (:obj:`torch.Tensor`): Tensor containing input embedding. | |
Returns: | |
- outputs (:obj:`Dict`): Dict containing keywords ``logit`` (:obj:`torch.Tensor`), \ | |
``q`` (:obj:`torch.Tensor`), ``quantiles`` (:obj:`torch.Tensor`), \ | |
``quantiles_hats`` (:obj:`torch.Tensor`), \ | |
``q_tau_i`` (:obj:`torch.Tensor`), ``entropies`` (:obj:`torch.Tensor`). | |
Shapes: | |
- x: :math:`(B, N)`, where ``B = batch_size`` and ``N = hidden_size``. | |
- logit: :math:`(B, M)`, where ``M = output_size``. | |
- q: :math:`(B, num_quantiles, M)`. | |
- quantiles: :math:`(B, num_quantiles + 1)`. | |
- quantiles_hats: :math:`(B, num_quantiles)`. | |
- q_tau_i: :math:`(B, num_quantiles - 1, M)`. | |
- entropies: :math:`(B, 1)`. | |
Examples: | |
>>> head = FQFHead(64, 64) | |
>>> inputs = torch.randn(4, 64) | |
>>> outputs = head(inputs) | |
>>> assert isinstance(outputs, dict) | |
>>> assert outputs['logit'].shape == torch.Size([4, 64]) | |
>>> # default num_quantiles is 32 | |
>>> assert outputs['q'].shape == torch.Size([4, 32, 64]) | |
>>> assert outputs['quantiles'].shape == torch.Size([4, 33]) | |
>>> assert outputs['quantiles_hats'].shape == torch.Size([4, 32]) | |
>>> assert outputs['q_tau_i'].shape == torch.Size([4, 31, 64]) | |
>>> assert outputs['quantiles'].shape == torch.Size([4, 1]) | |
""" | |
if num_quantiles is None: | |
num_quantiles = self.num_quantiles | |
batch_size = x.shape[0] | |
log_q_quantiles = self.quantiles_proposal( | |
x.detach() | |
) # (batch_size, num_quantiles), not to update encoder when learning w1_loss(fraction loss) | |
q_quantiles = log_q_quantiles.exp() # NOTE(rjy): e^log_q = q | |
# Calculate entropies of value distributions. | |
entropies = -(log_q_quantiles * q_quantiles).sum(dim=-1, keepdim=True) # (batch_size, 1) | |
assert entropies.shape == (batch_size, 1) | |
# accumalative softmax | |
# NOTE(rjy): because quantiles are still expressed in the form of their respective proportions, | |
# e.g. [0.33, 0.33, 0.33] => [0.33, 0.66, 0.99] | |
q_quantiles = torch.cumsum(q_quantiles, dim=1) | |
# quantile_hats: find the optimal condition for τ to minimize W1(Z, τ) | |
tau_0 = torch.zeros((batch_size, 1)).to(x) | |
q_quantiles = torch.cat((tau_0, q_quantiles), dim=1) # [batch_size, num_quantiles+1] | |
# NOTE(rjy): theta_i = F^(-1)_Z((tau_i+tau_i+1)/2), τ^ = (tau_i+tau_i+1)/2, q_quantiles_hats is τ^ | |
q_quantiles_hats = (q_quantiles[:, 1:] + q_quantiles[:, :-1]).detach() / 2. # (batch_size, num_quantiles) | |
# NOTE(rjy): reparameterize q_quantiles_hats | |
q_quantile_net = self.quantile_net(q_quantiles_hats) # [batch_size, num_quantiles, hidden_size(64)] | |
# x.view[batch_size, 1, hidden_size(64)] | |
q_x = (x.view(batch_size, 1, -1) * q_quantile_net) # [batch_size, num_quantiles, hidden_size(64)] | |
q = self.Q(q_x) # [batch_size, num_quantiles, action_dim(64)] | |
logit = q.mean(1) | |
with torch.no_grad(): | |
q_tau_i_net = self.quantile_net( | |
q_quantiles[:, 1:-1].detach() | |
) # [batch_size, num_quantiles-1, hidden_size(64)] | |
q_tau_i_x = (x.view(batch_size, 1, -1) * q_tau_i_net) # [batch_size, (num_quantiles-1), hidden_size(64)] | |
q_tau_i = self.Q(q_tau_i_x) # [batch_size, num_quantiles-1, action_dim] | |
return { | |
'logit': logit, | |
'q': q, | |
'quantiles': q_quantiles, | |
'quantiles_hats': q_quantiles_hats, | |
'q_tau_i': q_tau_i, | |
'entropies': entropies | |
} | |
class DuelingHead(nn.Module): | |
""" | |
Overview: | |
The ``DuelingHead`` is used to output discrete actions logit. | |
This module is used in Dueling DQN. | |
Interfaces: | |
``__init__``, ``forward``. | |
""" | |
def __init__( | |
self, | |
hidden_size: int, | |
output_size: int, | |
layer_num: int = 1, | |
a_layer_num: Optional[int] = None, | |
v_layer_num: Optional[int] = None, | |
activation: Optional[nn.Module] = nn.ReLU(), | |
norm_type: Optional[str] = None, | |
dropout: Optional[float] = None, | |
noise: Optional[bool] = False, | |
) -> None: | |
""" | |
Overview: | |
Init the ``DuelingHead`` layers according to the provided arguments. | |
Arguments: | |
- hidden_size (:obj:`int`): The ``hidden_size`` of the MLP connected to ``DuelingHead``. | |
- output_size (:obj:`int`): The number of outputs. | |
- a_layer_num (:obj:`int`): The number of layers used in the network to compute action output. | |
- v_layer_num (:obj:`int`): The number of layers used in the network to compute value output. | |
- activation (:obj:`nn.Module`): The type of activation function to use in MLP. \ | |
If ``None``, then default set activation to ``nn.ReLU()``. Default ``None``. | |
- norm_type (:obj:`str`): The type of normalization to use. See ``ding.torch_utils.network.fc_block`` \ | |
for more details. Default ``None``. | |
- dropout (:obj:`float`): The dropout rate of dropout layer. Default ``None``. | |
- noise (:obj:`bool`): Whether use ``NoiseLinearLayer`` as ``layer_fn`` in Q networks' MLP. \ | |
Default ``False``. | |
""" | |
super(DuelingHead, self).__init__() | |
if a_layer_num is None: | |
a_layer_num = layer_num | |
if v_layer_num is None: | |
v_layer_num = layer_num | |
layer = NoiseLinearLayer if noise else nn.Linear | |
block = noise_block if noise else fc_block | |
self.A = nn.Sequential( | |
MLP( | |
hidden_size, | |
hidden_size, | |
hidden_size, | |
a_layer_num, | |
layer_fn=layer, | |
activation=activation, | |
use_dropout=dropout is not None, | |
dropout_probability=dropout, | |
norm_type=norm_type | |
), block(hidden_size, output_size) | |
) | |
self.V = nn.Sequential( | |
MLP( | |
hidden_size, | |
hidden_size, | |
hidden_size, | |
v_layer_num, | |
layer_fn=layer, | |
activation=activation, | |
use_dropout=dropout is not None, | |
dropout_probability=dropout, | |
norm_type=norm_type | |
), block(hidden_size, 1) | |
) | |
def forward(self, x: torch.Tensor) -> Dict: | |
""" | |
Overview: | |
Use encoded embedding tensor to run MLP with ``DuelingHead`` and return the prediction dictionary. | |
Arguments: | |
- x (:obj:`torch.Tensor`): Tensor containing input embedding. | |
Returns: | |
- outputs (:obj:`Dict`): Dict containing keyword ``logit`` (:obj:`torch.Tensor`). | |
Shapes: | |
- x: :math:`(B, N)`, where ``B = batch_size`` and ``N = hidden_size``. | |
- logit: :math:`(B, M)`, where ``M = output_size``. | |
Examples: | |
>>> head = DuelingHead(64, 64) | |
>>> inputs = torch.randn(4, 64) | |
>>> outputs = head(inputs) | |
>>> assert isinstance(outputs, dict) | |
>>> assert outputs['logit'].shape == torch.Size([4, 64]) | |
""" | |
a = self.A(x) | |
v = self.V(x) | |
q_value = a - a.mean(dim=-1, keepdim=True) + v | |
return {'logit': q_value} | |
class StochasticDuelingHead(nn.Module): | |
""" | |
Overview: | |
The ``Stochastic Dueling Network`` is proposed in paper ACER (arxiv 1611.01224). \ | |
That is to say, dueling network architecture in continuous action space. | |
Interfaces: | |
``__init__``, ``forward``. | |
""" | |
def __init__( | |
self, | |
hidden_size: int, | |
action_shape: int, | |
layer_num: int = 1, | |
a_layer_num: Optional[int] = None, | |
v_layer_num: Optional[int] = None, | |
activation: Optional[nn.Module] = nn.ReLU(), | |
norm_type: Optional[str] = None, | |
noise: Optional[bool] = False, | |
last_tanh: Optional[bool] = True, | |
) -> None: | |
""" | |
Overview: | |
Init the ``Stochastic DuelingHead`` layers according to the provided arguments. | |
Arguments: | |
- hidden_size (:obj:`int`): The ``hidden_size`` of the MLP connected to ``StochasticDuelingHead``. | |
- action_shape (:obj:`int`): The number of continuous action shape, usually integer value. | |
- layer_num (:obj:`int`): The number of default layers used in the network to compute action and value \ | |
output. | |
- a_layer_num (:obj:`int`): The number of layers used in the network to compute action output. Default is \ | |
``layer_num``. | |
- v_layer_num (:obj:`int`): The number of layers used in the network to compute value output. Default is \ | |
``layer_num``. | |
- activation (:obj:`nn.Module`): The type of activation function to use in MLP. \ | |
If ``None``, then default set activation to ``nn.ReLU()``. Default ``None``. | |
- norm_type (:obj:`str`): The type of normalization to use. See ``ding.torch_utils.network.fc_block`` \ | |
for more details. Default ``None``. | |
- noise (:obj:`bool`): Whether use ``NoiseLinearLayer`` as ``layer_fn`` in Q networks' MLP. \ | |
Default ``False``. | |
- last_tanh (:obj:`bool`): If ``True`` Apply ``tanh`` to actions. Default ``True``. | |
""" | |
super(StochasticDuelingHead, self).__init__() | |
if a_layer_num is None: | |
a_layer_num = layer_num | |
if v_layer_num is None: | |
v_layer_num = layer_num | |
layer = NoiseLinearLayer if noise else nn.Linear | |
block = noise_block if noise else fc_block | |
self.A = nn.Sequential( | |
MLP( | |
hidden_size + action_shape, | |
hidden_size, | |
hidden_size, | |
a_layer_num, | |
layer_fn=layer, | |
activation=activation, | |
norm_type=norm_type | |
), block(hidden_size, 1) | |
) | |
self.V = nn.Sequential( | |
MLP( | |
hidden_size, | |
hidden_size, | |
hidden_size, | |
v_layer_num, | |
layer_fn=layer, | |
activation=activation, | |
norm_type=norm_type | |
), block(hidden_size, 1) | |
) | |
if last_tanh: | |
self.tanh = nn.Tanh() | |
else: | |
self.tanh = None | |
def forward( | |
self, | |
s: torch.Tensor, | |
a: torch.Tensor, | |
mu: torch.Tensor, | |
sigma: torch.Tensor, | |
sample_size: int = 10, | |
) -> Dict[str, torch.Tensor]: | |
""" | |
Overview: | |
Use encoded embedding tensor to run MLP with ``StochasticDuelingHead`` and return the prediction dictionary. | |
Arguments: | |
- s (:obj:`torch.Tensor`): Tensor containing input embedding. | |
- a (:obj:`torch.Tensor`): The original continuous behaviour action. | |
- mu (:obj:`torch.Tensor`): The ``mu`` gaussian reparameterization output of actor head at current \ | |
timestep. | |
- sigma (:obj:`torch.Tensor`): The ``sigma`` gaussian reparameterization output of actor head at \ | |
current timestep. | |
- sample_size (:obj:`int`): The number of samples for continuous action when computing the Q value. | |
Returns: | |
- outputs (:obj:`Dict`): Dict containing keywords \ | |
``q_value`` (:obj:`torch.Tensor`) and ``v_value`` (:obj:`torch.Tensor`). | |
Shapes: | |
- s: :math:`(B, N)`, where ``B = batch_size`` and ``N = hidden_size``. | |
- a: :math:`(B, A)`, where ``A = action_size``. | |
- mu: :math:`(B, A)`. | |
- sigma: :math:`(B, A)`. | |
- q_value: :math:`(B, 1)`. | |
- v_value: :math:`(B, 1)`. | |
Examples: | |
>>> head = StochasticDuelingHead(64, 64) | |
>>> inputs = torch.randn(4, 64) | |
>>> a = torch.randn(4, 64) | |
>>> mu = torch.randn(4, 64) | |
>>> sigma = torch.ones(4, 64) | |
>>> outputs = head(inputs, a, mu, sigma) | |
>>> assert isinstance(outputs, dict) | |
>>> assert outputs['q_value'].shape == torch.Size([4, 1]) | |
>>> assert outputs['v_value'].shape == torch.Size([4, 1]) | |
""" | |
batch_size = s.shape[0] # batch_size or batch_size * T | |
hidden_size = s.shape[1] | |
action_size = a.shape[1] | |
state_cat_action = torch.cat((s, a), dim=1) # size (B, action_size + state_size) | |
a_value = self.A(state_cat_action) # size (B, 1) | |
v_value = self.V(s) # size (B, 1) | |
# size (B, sample_size, hidden_size) | |
expand_s = (torch.unsqueeze(s, 1)).expand((batch_size, sample_size, hidden_size)) | |
# in case for gradient back propagation | |
dist = Independent(Normal(mu, sigma), 1) | |
action_sample = dist.rsample(sample_shape=(sample_size, )) | |
if self.tanh: | |
action_sample = self.tanh(action_sample) | |
# (sample_size, B, action_size)->(B, sample_size, action_size) | |
action_sample = action_sample.permute(1, 0, 2) | |
# size (B, sample_size, action_size + hidden_size) | |
state_cat_action_sample = torch.cat((expand_s, action_sample), dim=-1) | |
a_val_sample = self.A(state_cat_action_sample) # size (B, sample_size, 1) | |
q_value = v_value + a_value - a_val_sample.mean(dim=1) # size (B, 1) | |
return {'q_value': q_value, 'v_value': v_value} | |
class RegressionHead(nn.Module): | |
""" | |
Overview: | |
The ``RegressionHead`` is used to regress continuous variables. | |
This module is used for generating Q-value (DDPG critic) of continuous actions, \ | |
or state value (A2C/PPO), or directly predicting continuous action (DDPG actor). | |
Interfaces: | |
``__init__``, ``forward``. | |
""" | |
def __init__( | |
self, | |
input_size: int, | |
output_size: int, | |
layer_num: int = 2, | |
final_tanh: Optional[bool] = False, | |
activation: Optional[nn.Module] = nn.ReLU(), | |
norm_type: Optional[str] = None, | |
hidden_size: int = None, | |
) -> None: | |
""" | |
Overview: | |
Init the ``RegressionHead`` layers according to the provided arguments. | |
Arguments: | |
- hidden_size (:obj:`int`): The ``hidden_size`` of the MLP connected to ``RegressionHead``. | |
- output_size (:obj:`int`): The number of outputs. | |
- layer_num (:obj:`int`): The number of layers used in the network to compute Q value output. | |
- final_tanh (:obj:`bool`): If ``True`` apply ``tanh`` to output. Default ``False``. | |
- activation (:obj:`nn.Module`): The type of activation function to use in MLP. \ | |
If ``None``, then default set activation to ``nn.ReLU()``. Default ``None``. | |
- norm_type (:obj:`str`): The type of normalization to use. See ``ding.torch_utils.network.fc_block`` \ | |
for more details. Default ``None``. | |
""" | |
super(RegressionHead, self).__init__() | |
if hidden_size is None: | |
hidden_size = input_size | |
self.main = MLP(input_size, hidden_size, hidden_size, layer_num, activation=activation, norm_type=norm_type) | |
self.last = nn.Linear(hidden_size, output_size) # for convenience of special initialization | |
self.final_tanh = final_tanh | |
if self.final_tanh: | |
self.tanh = nn.Tanh() | |
def forward(self, x: torch.Tensor) -> Dict: | |
""" | |
Overview: | |
Use encoded embedding tensor to run MLP with ``RegressionHead`` and return the prediction dictionary. | |
Arguments: | |
- x (:obj:`torch.Tensor`): Tensor containing input embedding. | |
Returns: | |
- outputs (:obj:`Dict`): Dict containing keyword ``pred`` (:obj:`torch.Tensor`). | |
Shapes: | |
- x: :math:`(B, N)`, where ``B = batch_size`` and ``N = hidden_size``. | |
- pred: :math:`(B, M)`, where ``M = output_size``. | |
Examples: | |
>>> head = RegressionHead(64, 64) | |
>>> inputs = torch.randn(4, 64) | |
>>> outputs = head(inputs) | |
>>> assert isinstance(outputs, dict) | |
>>> assert outputs['pred'].shape == torch.Size([4, 64]) | |
""" | |
x = self.main(x) | |
x = self.last(x) | |
if self.final_tanh: | |
x = self.tanh(x) | |
if x.shape[-1] == 1 and len(x.shape) > 1: | |
x = x.squeeze(-1) | |
return {'pred': x} | |
class ReparameterizationHead(nn.Module): | |
""" | |
Overview: | |
The ``ReparameterizationHead`` is used to generate Gaussian distribution of continuous variable, \ | |
which is parameterized by ``mu`` and ``sigma``. | |
This module is often used in stochastic policies, such as PPO and SAC. | |
Interfaces: | |
``__init__``, ``forward``. | |
""" | |
# The "happo" type here is to align with the sigma initialization method of the network in the original HAPPO \ | |
# paper. The code here needs to be optimized later. | |
default_sigma_type = ['fixed', 'independent', 'conditioned', 'happo'] | |
default_bound_type = ['tanh', None] | |
def __init__( | |
self, | |
input_size: int, | |
output_size: int, | |
layer_num: int = 2, | |
sigma_type: Optional[str] = None, | |
fixed_sigma_value: Optional[float] = 1.0, | |
activation: Optional[nn.Module] = nn.ReLU(), | |
norm_type: Optional[str] = None, | |
bound_type: Optional[str] = None, | |
hidden_size: int = None | |
) -> None: | |
""" | |
Overview: | |
Init the ``ReparameterizationHead`` layers according to the provided arguments. | |
Arguments: | |
- hidden_size (:obj:`int`): The ``hidden_size`` of the MLP connected to ``ReparameterizationHead``. | |
- output_size (:obj:`int`): The number of outputs. | |
- layer_num (:obj:`int`): The number of layers used in the network to compute Q value output. | |
- sigma_type (:obj:`str`): Sigma type used. Choose among \ | |
``['fixed', 'independent', 'conditioned']``. Default is ``None``. | |
- fixed_sigma_value (:obj:`float`): When choosing ``fixed`` type, the tensor ``output['sigma']`` \ | |
is filled with this input value. Default is ``None``. | |
- activation (:obj:`nn.Module`): The type of activation function to use in MLP. \ | |
If ``None``, then default set activation to ``nn.ReLU()``. Default ``None``. | |
- norm_type (:obj:`str`): The type of normalization to use. See ``ding.torch_utils.network.fc_block`` \ | |
for more details. Default ``None``. | |
- bound_type (:obj:`str`): Bound type to apply to output ``mu``. Choose among ``['tanh', None]``. \ | |
Default is ``None``. | |
""" | |
super(ReparameterizationHead, self).__init__() | |
if hidden_size is None: | |
hidden_size = input_size | |
self.sigma_type = sigma_type | |
assert sigma_type in self.default_sigma_type, "Please indicate sigma_type as one of {}".format( | |
self.default_sigma_type | |
) | |
self.bound_type = bound_type | |
assert bound_type in self.default_bound_type, "Please indicate bound_type as one of {}".format( | |
self.default_bound_type | |
) | |
self.main = MLP(input_size, hidden_size, hidden_size, layer_num, activation=activation, norm_type=norm_type) | |
self.mu = nn.Linear(hidden_size, output_size) | |
if self.sigma_type == 'fixed': | |
self.sigma = torch.full((1, output_size), fixed_sigma_value) | |
elif self.sigma_type == 'independent': # independent parameter | |
self.log_sigma_param = nn.Parameter(torch.zeros(1, output_size)) | |
elif self.sigma_type == 'conditioned': | |
self.log_sigma_layer = nn.Linear(hidden_size, output_size) | |
elif self.sigma_type == 'happo': | |
self.sigma_x_coef = 1. | |
self.sigma_y_coef = 0.5 | |
# This parameter (x_coef, y_coef) refers to the HAPPO paper http://arxiv.org/abs/2109.11251. | |
self.log_sigma_param = nn.Parameter(torch.ones(1, output_size) * self.sigma_x_coef) | |
def forward(self, x: torch.Tensor) -> Dict: | |
""" | |
Overview: | |
Use encoded embedding tensor to run MLP with ``ReparameterizationHead`` and return the prediction \ | |
dictionary. | |
Arguments: | |
- x (:obj:`torch.Tensor`): Tensor containing input embedding. | |
Returns: | |
- outputs (:obj:`Dict`): Dict containing keywords ``mu`` (:obj:`torch.Tensor`) and ``sigma`` \ | |
(:obj:`torch.Tensor`). | |
Shapes: | |
- x: :math:`(B, N)`, where ``B = batch_size`` and ``N = hidden_size``. | |
- mu: :math:`(B, M)`, where ``M = output_size``. | |
- sigma: :math:`(B, M)`. | |
Examples: | |
>>> head = ReparameterizationHead(64, 64, sigma_type='fixed') | |
>>> inputs = torch.randn(4, 64) | |
>>> outputs = head(inputs) | |
>>> assert isinstance(outputs, dict) | |
>>> assert outputs['mu'].shape == torch.Size([4, 64]) | |
>>> assert outputs['sigma'].shape == torch.Size([4, 64]) | |
""" | |
x = self.main(x) | |
mu = self.mu(x) | |
if self.bound_type == 'tanh': | |
mu = torch.tanh(mu) | |
if self.sigma_type == 'fixed': | |
sigma = self.sigma.to(mu.device) + torch.zeros_like(mu) # addition aims to broadcast shape | |
elif self.sigma_type == 'independent': | |
log_sigma = self.log_sigma_param + torch.zeros_like(mu) # addition aims to broadcast shape | |
sigma = torch.exp(log_sigma) | |
elif self.sigma_type == 'conditioned': | |
log_sigma = self.log_sigma_layer(x) | |
sigma = torch.exp(torch.clamp(log_sigma, -20, 2)) | |
elif self.sigma_type == 'happo': | |
log_sigma = self.log_sigma_param + torch.zeros_like(mu) | |
sigma = torch.sigmoid(log_sigma / self.sigma_x_coef) * self.sigma_y_coef | |
return {'mu': mu, 'sigma': sigma} | |
class PopArtVHead(nn.Module): | |
""" | |
Overview: | |
The ``PopArtVHead`` is used to generate adaptive normalized state value. More information can be found in \ | |
paper Multi-task Deep Reinforcement Learning with PopArt. \ | |
https://arxiv.org/abs/1809.04474 \ | |
This module is used in PPO or IMPALA. | |
Interfaces: | |
``__init__``, ``forward``. | |
""" | |
def __init__( | |
self, | |
hidden_size: int, | |
output_size: int, | |
layer_num: int = 1, | |
activation: Optional[nn.Module] = nn.ReLU(), | |
norm_type: Optional[str] = None, | |
) -> None: | |
""" | |
Overview: | |
Init the ``PopArtVHead`` layers according to the provided arguments. | |
Arguments: | |
- hidden_size (:obj:`int`): The ``hidden_size`` of the MLP connected to ``PopArtVHead``. | |
- output_size (:obj:`int`): The number of outputs. | |
- layer_num (:obj:`int`): The number of layers used in the network to compute Q value output. | |
- activation (:obj:`nn.Module`): The type of activation function to use in MLP. \ | |
If ``None``, then default set activation to ``nn.ReLU()``. Default ``None``. | |
- norm_type (:obj:`str`): The type of normalization to use. See ``ding.torch_utils.network.fc_block`` \ | |
for more details. Default ``None``. | |
""" | |
super(PopArtVHead, self).__init__() | |
self.popart = PopArt(hidden_size, output_size) | |
self.Q = nn.Sequential( | |
MLP( | |
hidden_size, | |
hidden_size, | |
hidden_size, | |
layer_num, | |
layer_fn=nn.Linear, | |
activation=activation, | |
norm_type=norm_type | |
), self.popart | |
) | |
def forward(self, x: torch.Tensor) -> Dict: | |
""" | |
Overview: | |
Use encoded embedding tensor to run MLP with ``PopArtVHead`` and return the normalized prediction and \ | |
the unnormalized prediction dictionary. | |
Arguments: | |
- x (:obj:`torch.Tensor`): Tensor containing input embedding. | |
Returns: | |
- outputs (:obj:`Dict`): Dict containing keyword ``pred`` (:obj:`torch.Tensor`) \ | |
and ``unnormalized_pred`` (:obj:`torch.Tensor`). | |
Shapes: | |
- x: :math:`(B, N)`, where ``B = batch_size`` and ``N = hidden_size``. | |
- logit: :math:`(B, M)`, where ``M = output_size``. | |
Examples: | |
>>> head = PopArtVHead(64, 64) | |
>>> inputs = torch.randn(4, 64) | |
>>> outputs = head(inputs) | |
>>> assert isinstance(outputs, dict) and outputs['pred'].shape == torch.Size([4, 64]) and \ | |
outputs['unnormalized_pred'].shape == torch.Size([4, 64]) | |
""" | |
x = self.Q(x) | |
return x | |
class AttentionPolicyHead(nn.Module): | |
""" | |
Overview: | |
Cross-attention-type discrete action policy head, which is often used in variable discrete action space. | |
Interfaces: | |
``__init__``, ``forward``. | |
""" | |
def __init__(self) -> None: | |
super(AttentionPolicyHead, self).__init__() | |
def forward(self, key: torch.Tensor, query: torch.Tensor) -> torch.Tensor: | |
""" | |
Overview: | |
Use attention-like mechanism to combine key and query tensor to output discrete action logit. | |
Arguments: | |
- key (:obj:`torch.Tensor`): Tensor containing key embedding. | |
- query (:obj:`torch.Tensor`): Tensor containing query embedding. | |
Returns: | |
- logit (:obj:`torch.Tensor`): Tensor containing output discrete action logit. | |
Shapes: | |
- key: :math:`(B, N, K)`, where ``B = batch_size``, ``N = possible discrete action choices`` and \ | |
``K = hidden_size``. | |
- query: :math:`(B, K)`. | |
- logit: :math:`(B, N)`. | |
Examples: | |
>>> head = AttentionPolicyHead() | |
>>> key = torch.randn(4, 5, 64) | |
>>> query = torch.randn(4, 64) | |
>>> logit = head(key, query) | |
>>> assert logit.shape == torch.Size([4, 5]) | |
.. note:: | |
In this head, we assume that the ``key`` and ``query`` tensor are both normalized. | |
""" | |
if len(query.shape) == 2 and len(key.shape) == 3: | |
query = query.unsqueeze(1) | |
logit = (key * query).sum(-1) | |
return logit | |
class MultiHead(nn.Module): | |
""" | |
Overview: | |
The ``MultiHead`` is used to generate multiple similar results. | |
For example, we can combine ``Distribution`` and ``MultiHead`` to generate multi-discrete action space logit. | |
Interfaces: | |
``__init__``, ``forward``. | |
""" | |
def __init__(self, head_cls: type, hidden_size: int, output_size_list: SequenceType, **head_kwargs) -> None: | |
""" | |
Overview: | |
Init the ``MultiHead`` layers according to the provided arguments. | |
Arguments: | |
- head_cls (:obj:`type`): The class of head, choose among [``DuelingHead``, ``DistributionHead``, \ | |
''QuatileHead'', ...]. | |
- hidden_size (:obj:`int`): The ``hidden_size`` of the MLP connected to the ``Head``. | |
- output_size_list (:obj:`int`): Sequence of ``output_size`` for multi discrete action, e.g. ``[2, 3, 5]``. | |
- head_kwargs: (:obj:`dict`): Dict containing class-specific arguments. | |
""" | |
super(MultiHead, self).__init__() | |
self.pred = nn.ModuleList() | |
for size in output_size_list: | |
self.pred.append(head_cls(hidden_size, size, **head_kwargs)) | |
def forward(self, x: torch.Tensor) -> Dict: | |
""" | |
Overview: | |
Use encoded embedding tensor to run MLP with ``MultiHead`` and return the prediction dictionary. | |
Arguments: | |
- x (:obj:`torch.Tensor`): Tensor containing input embedding. | |
Returns: | |
- outputs (:obj:`Dict`): Dict containing keywords ``logit`` (:obj:`torch.Tensor`) \ | |
corresponding to the logit of each ``output`` each accessed at ``['logit'][i]``. | |
Shapes: | |
- x: :math:`(B, N)`, where ``B = batch_size`` and ``N = hidden_size``. | |
- logit: :math:`(B, Mi)`, where ``Mi = output_size`` corresponding to output ``i``. | |
Examples: | |
>>> head = MultiHead(DuelingHead, 64, [2, 3, 5], v_layer_num=2) | |
>>> inputs = torch.randn(4, 64) | |
>>> outputs = head(inputs) | |
>>> assert isinstance(outputs, dict) | |
>>> # output_size_list is [2, 3, 5] as set | |
>>> # Therefore each dim of logit is as follows | |
>>> outputs['logit'][0].shape | |
>>> torch.Size([4, 2]) | |
>>> outputs['logit'][1].shape | |
>>> torch.Size([4, 3]) | |
>>> outputs['logit'][2].shape | |
>>> torch.Size([4, 5]) | |
""" | |
return lists_to_dicts([m(x) for m in self.pred]) | |
class EnsembleHead(nn.Module): | |
""" | |
Overview: | |
The ``EnsembleHead`` is used to generate Q-value for Q-ensemble in model-based RL algorithms. | |
Interfaces: | |
``__init__``, ``forward``. | |
""" | |
def __init__( | |
self, | |
input_size: int, | |
output_size: int, | |
hidden_size: int, | |
layer_num: int, | |
ensemble_num: int, | |
activation: Optional[nn.Module] = nn.ReLU(), | |
norm_type: Optional[str] = None | |
) -> None: | |
super(EnsembleHead, self).__init__() | |
d = input_size | |
layers = [] | |
for _ in range(layer_num): | |
layers.append( | |
conv1d_block( | |
d * ensemble_num, | |
hidden_size * ensemble_num, | |
kernel_size=1, | |
stride=1, | |
groups=ensemble_num, | |
activation=activation, | |
norm_type=norm_type | |
) | |
) | |
d = hidden_size | |
# Adding activation for last layer will lead to train fail | |
layers.append( | |
conv1d_block( | |
hidden_size * ensemble_num, | |
output_size * ensemble_num, | |
kernel_size=1, | |
stride=1, | |
groups=ensemble_num, | |
activation=None, | |
norm_type=None | |
) | |
) | |
self.pred = nn.Sequential(*layers) | |
def forward(self, x: torch.Tensor) -> Dict: | |
""" | |
Overview: | |
Use encoded embedding tensor to run MLP with ``EnsembleHead`` and return the prediction dictionary. | |
Arguments: | |
- x (:obj:`torch.Tensor`): Tensor containing input embedding. | |
Returns: | |
- outputs (:obj:`Dict`): Dict containing keyword ``pred`` (:obj:`torch.Tensor`). | |
Shapes: | |
- x: :math:`(B, N * ensemble_num, 1)`, where ``B = batch_size`` and ``N = hidden_size``. | |
- pred: :math:`(B, M * ensemble_num, 1)`, where ``M = output_size``. | |
Examples: | |
>>> head = EnsembleHead(64 * 10, 64 * 10) | |
>>> inputs = torch.randn(4, 64 * 10, 1) ` | |
>>> outputs = head(inputs) | |
>>> assert isinstance(outputs, dict) | |
>>> assert outputs['pred'].shape == torch.Size([10, 64 * 10]) | |
""" | |
x = self.pred(x).squeeze(-1) | |
return {'pred': x} | |
def independent_normal_dist(logits: Union[List, Dict]) -> torch.distributions.Distribution: | |
""" | |
Overview: | |
Convert different types logit to independent normal distribution. | |
Arguments: | |
- logits (:obj:`Union[List, Dict]`): The logits to be converted. | |
Returns: | |
- dist (:obj:`torch.distributions.Distribution`): The converted normal distribution. | |
Examples: | |
>>> logits = [torch.randn(4, 5), torch.ones(4, 5)] | |
>>> dist = independent_normal_dist(logits) | |
>>> assert isinstance(dist, torch.distributions.Independent) | |
>>> assert isinstance(dist.base_dist, torch.distributions.Normal) | |
>>> assert dist.base_dist.loc.shape == torch.Size([4, 5]) | |
>>> assert dist.base_dist.scale.shape == torch.Size([4, 5]) | |
Raises: | |
- TypeError: If the type of logits is not ``list`` or ``dict``. | |
""" | |
if isinstance(logits, (list, tuple)): | |
return Independent(Normal(*logits), 1) | |
elif isinstance(logits, dict): | |
return Independent(Normal(logits['mu'], logits['sigma']), 1) | |
else: | |
raise TypeError("invalid logits type: {}".format(type(logits))) | |
head_cls_map = { | |
# discrete | |
'discrete': DiscreteHead, | |
'dueling': DuelingHead, | |
'sdn': StochasticDuelingHead, | |
'distribution': DistributionHead, | |
'rainbow': RainbowHead, | |
'qrdqn': QRDQNHead, | |
'quantile': QuantileHead, | |
'fqf': FQFHead, | |
'branch': BranchingHead, | |
'attention_policy': AttentionPolicyHead, | |
# continuous | |
'regression': RegressionHead, | |
'reparameterization': ReparameterizationHead, | |
'popart': PopArtVHead, | |
'sdn': StochasticDuelingHead, | |
# multi | |
'multi': MultiHead, | |
'ensemble': EnsembleHead, | |
} | |