Spaces:
Sleeping
Sleeping
import copy | |
import torch | |
from easydict import EasyDict | |
from ding.utils import import_module, MODEL_REGISTRY | |
def create_model(cfg: EasyDict) -> torch.nn.Module: | |
""" | |
Overview: | |
Create a neural network model according to the given EasyDict-type ``cfg``. | |
Arguments: | |
- cfg: (:obj:`EasyDict`): User's model config. The key ``import_name`` is \ | |
used to import modules, and they key ``type`` is used to indicate the model. | |
Returns: | |
- (:obj:`torch.nn.Module`): The created neural network model. | |
Examples: | |
>>> cfg = EasyDict({ | |
>>> 'import_names': ['ding.model.template.q_learning'], | |
>>> 'type': 'dqn', | |
>>> 'obs_shape': 4, | |
>>> 'action_shape': 2, | |
>>> }) | |
>>> model = create_model(cfg) | |
.. tip:: | |
This method will not modify the ``cfg`` , it will deepcopy the ``cfg`` and then modify it. | |
""" | |
cfg = copy.deepcopy(cfg) | |
import_module(cfg.pop('import_names', [])) | |
# here we must use the pop opeartion to ensure compatibility | |
return MODEL_REGISTRY.build(cfg.pop("type"), **cfg) | |