Spaces:
Sleeping
Sleeping
from typing import Union, Dict, Optional | |
import torch | |
import torch.nn as nn | |
from ding.utils import SequenceType, squeeze, MODEL_REGISTRY | |
from ..common import ReparameterizationHead, RegressionHead, DiscreteHead, MultiHead, \ | |
FCEncoder, ConvEncoder | |
class ACER(nn.Module): | |
""" | |
Overview: | |
The model of algorithmn ACER(Actor Critic with Experience Replay) | |
Sample Efficient Actor-Critic with Experience Replay. | |
https://arxiv.org/abs/1611.01224 | |
Interfaces: | |
``__init__``, ``forward``, ``compute_actor``, ``compute_critic`` | |
""" | |
mode = ['compute_actor', 'compute_critic'] | |
def __init__( | |
self, | |
obs_shape: Union[int, SequenceType], | |
action_shape: Union[int, SequenceType], | |
encoder_hidden_size_list: SequenceType = [128, 128, 64], | |
actor_head_hidden_size: int = 64, | |
actor_head_layer_num: int = 1, | |
critic_head_hidden_size: int = 64, | |
critic_head_layer_num: int = 1, | |
activation: Optional[nn.Module] = nn.ReLU(), | |
norm_type: Optional[str] = None, | |
) -> None: | |
""" | |
Overview: | |
Init the ACER Model according to arguments. | |
Arguments: | |
- obs_shape (:obj:`Union[int, SequenceType]`): Observation's space. | |
- action_shape (:obj:`Union[int, SequenceType]`): Action's space. | |
- actor_head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` to pass to actor-nn's ``Head``. | |
- actor_head_layer_num (:obj:`int`): | |
The num of layers used in the network to compute Q value output for actor's nn. | |
- critic_head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` to pass to critic-nn's ``Head``. | |
- critic_head_layer_num (:obj:`int`): | |
The num of layers used in the network to compute Q value output for critic's nn. | |
- activation (:obj:`Optional[nn.Module]`): | |
The type of activation function to use in ``MLP`` the after ``layer_fn``, | |
if ``None`` then default set to ``nn.ReLU()`` | |
- norm_type (:obj:`Optional[str]`): | |
The type of normalization to use, see ``ding.torch_utils.fc_block`` for more details. | |
""" | |
super(ACER, self).__init__() | |
obs_shape: int = squeeze(obs_shape) | |
action_shape: int = squeeze(action_shape) | |
if isinstance(obs_shape, int) or len(obs_shape) == 1: | |
encoder_cls = FCEncoder | |
elif len(obs_shape) == 3: | |
encoder_cls = ConvEncoder | |
else: | |
raise RuntimeError( | |
"not support obs_shape for pre-defined encoder: {}, please customize your own DQN".format(obs_shape) | |
) | |
self.actor_encoder = encoder_cls( | |
obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type | |
) | |
self.critic_encoder = encoder_cls( | |
obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type | |
) | |
self.critic_head = RegressionHead( | |
critic_head_hidden_size, action_shape, critic_head_layer_num, activation=activation, norm_type=norm_type | |
) | |
self.actor_head = DiscreteHead( | |
actor_head_hidden_size, action_shape, actor_head_layer_num, activation=activation, norm_type=norm_type | |
) | |
self.actor = [self.actor_encoder, self.actor_head] | |
self.critic = [self.critic_encoder, self.critic_head] | |
self.actor = nn.ModuleList(self.actor) | |
self.critic = nn.ModuleList(self.critic) | |
def forward(self, inputs: Union[torch.Tensor, Dict], mode: str) -> Dict: | |
""" | |
Overview: | |
Use observation to predict output. | |
Parameter updates with ACER's MLPs forward setup. | |
Arguments: | |
- mode (:obj:`str`): Name of the forward mode. | |
Returns: | |
- outputs (:obj:`Dict`): Outputs of network forward. | |
Shapes (Actor): | |
- obs (:obj:`torch.Tensor`): :math:`(B, N1)`, where B is batch size and N1 is ``obs_shape`` | |
- logit (:obj:`torch.FloatTensor`): :math:`(B, N2)`, where B is batch size and N2 is ``action_shape`` | |
Shapes (Critic): | |
- inputs (:obj:`torch.Tensor`): :math:`(B, N1)`, B is batch size and N1 corresponds to ``obs_shape`` | |
- q_value (:obj:`torch.FloatTensor`): :math:`(B, N2)`, where B is batch size and N2 is ``action_shape`` | |
""" | |
assert mode in self.mode, "not support forward mode: {}/{}".format(mode, self.mode) | |
return getattr(self, mode)(inputs) | |
def compute_actor(self, inputs: torch.Tensor) -> Dict: | |
""" | |
Overview: | |
Use encoded embedding tensor to predict output. | |
Execute parameter updates with ``compute_actor`` mode | |
Use encoded embedding tensor to predict output. | |
Arguments: | |
- inputs (:obj:`torch.Tensor`): | |
The encoded embedding tensor, determined with given ``hidden_size``, i.e. ``(B, N=hidden_size)``. | |
``hidden_size = actor_head_hidden_size`` | |
- mode (:obj:`str`): Name of the forward mode. | |
Returns: | |
- outputs (:obj:`Dict`): Outputs of forward pass encoder and head. | |
ReturnsKeys (either): | |
- logit (:obj:`torch.FloatTensor`): :math:`(B, N1)`, where B is batch size and N1 is ``action_shape`` | |
Shapes: | |
- inputs (:obj:`torch.Tensor`): :math:`(B, N0)`, B is batch size and N0 corresponds to ``hidden_size`` | |
- logit (:obj:`torch.FloatTensor`): :math:`(B, N1)`, where B is batch size and N1 is ``action_shape`` | |
Examples: | |
>>> # Regression mode | |
>>> model = ACER(64, 64) | |
>>> inputs = torch.randn(4, 64) | |
>>> actor_outputs = model(inputs,'compute_actor') | |
>>> assert actor_outputs['logit'].shape == torch.Size([4, 64]) | |
""" | |
x = self.actor_encoder(inputs) | |
x = self.actor_head(x) | |
return x | |
def compute_critic(self, inputs: torch.Tensor) -> Dict: | |
""" | |
Overview: | |
Execute parameter updates with ``compute_critic`` mode | |
Use encoded embedding tensor to predict output. | |
Arguments: | |
- ``obs``, ``action`` encoded tensors. | |
- mode (:obj:`str`): Name of the forward mode. | |
Returns: | |
- outputs (:obj:`Dict`): Q-value output. | |
ReturnKeys: | |
- q_value (:obj:`torch.Tensor`): Q value tensor with same size as batch size. | |
Shapes: | |
- obs (:obj:`torch.Tensor`): :math:`(B, N1)`, where B is batch size and N1 is ``obs_shape`` | |
- q_value (:obj:`torch.FloatTensor`): :math:`(B, N2)`, where B is batch size and N2 is ``action_shape``. | |
Examples: | |
>>> inputs =torch.randn(4, N) | |
>>> model = ACER(obs_shape=(N, ),action_shape=5) | |
>>> model(inputs, mode='compute_critic')['q_value'] | |
""" | |
obs = inputs | |
x = self.critic_encoder(obs) | |
x = self.critic_head(x) | |
return {"q_value": x['pred']} | |