Spaces:
Sleeping
Sleeping
from typing import Union, Dict, Optional, Tuple | |
import torch | |
import torch.nn as nn | |
from ding.utils import squeeze, MODEL_REGISTRY, SequenceType | |
from ding.torch_utils import MLP | |
from ding.model.common import RegressionHead | |
class ATOCAttentionUnit(nn.Module): | |
""" | |
Overview: | |
The attention unit of the ATOC network. We now implement it as two-layer MLP, same as the original paper. | |
Interface: | |
``__init__``, ``forward`` | |
.. note:: | |
"ATOC paper: We use two-layer MLP to implement the attention unit but it is also can be realized by RNN." | |
""" | |
def __init__(self, thought_size: int, embedding_size: int) -> None: | |
""" | |
Overview: | |
Initialize the attention unit according to the size of input arguments. | |
Arguments: | |
- thought_size (:obj:`int`): the size of input thought | |
- embedding_size (:obj:`int`): the size of hidden layers | |
""" | |
super(ATOCAttentionUnit, self).__init__() | |
self._thought_size = thought_size | |
self._hidden_size = embedding_size | |
self._output_size = 1 | |
self._act1 = nn.ReLU() | |
self._fc1 = nn.Linear(self._thought_size, self._hidden_size, bias=True) | |
self._fc2 = nn.Linear(self._hidden_size, self._hidden_size, bias=True) | |
self._fc3 = nn.Linear(self._hidden_size, self._output_size, bias=True) | |
self._act2 = nn.Sigmoid() | |
def forward(self, data: Union[Dict, torch.Tensor]) -> torch.Tensor: | |
""" | |
Overview: | |
Take the thought of agents as input and generate the probability of these agent being initiator | |
Arguments: | |
- x (:obj:`Union[Dict, torch.Tensor`): the input tensor or dict contain the thoughts tensor | |
- ret (:obj:`torch.Tensor`): the output initiator probability | |
Shapes: | |
- data['thought']: :math:`(M, B, N)`, M is the num of thoughts to integrate,\ | |
B is batch_size and N is thought size | |
Examples: | |
>>> attention_unit = ATOCAttentionUnit(64, 64) | |
>>> thought = torch.randn(2, 3, 64) | |
>>> attention_unit(thought) | |
""" | |
x = data | |
if isinstance(data, Dict): | |
x = data['thought'] | |
x = self._fc1(x) | |
x = self._act1(x) | |
x = self._fc2(x) | |
x = self._act1(x) | |
x = self._fc3(x) | |
x = self._act2(x) | |
return x.squeeze(-1) | |
class ATOCCommunicationNet(nn.Module): | |
""" | |
Overview: | |
This ATOC commnication net is a bi-direction LSTM, so it can integrate all the thoughts in the group. | |
Interface: | |
``__init__``, ``forward`` | |
""" | |
def __init__(self, thought_size: int) -> None: | |
""" | |
Overview: | |
Initialize the communication network according to the size of input arguments. | |
Arguments: | |
- thought_size (:obj:`int`): the size of input thought | |
.. note:: | |
communication hidden size should be half of the actor_hidden_size because of the bi-direction lstm | |
""" | |
super(ATOCCommunicationNet, self).__init__() | |
assert thought_size % 2 == 0 | |
self._thought_size = thought_size | |
self._comm_hidden_size = thought_size // 2 | |
self._bi_lstm = nn.LSTM(self._thought_size, self._comm_hidden_size, bidirectional=True) | |
def forward(self, data: Union[Dict, torch.Tensor]): | |
""" | |
Overview: | |
The forward of ATOCCommunicationNet integrates thoughts in the group. | |
Arguments: | |
- x (:obj:`Union[Dict, torch.Tensor`): the input tensor or dict contain the thoughts tensor | |
- out (:obj:`torch.Tensor`): the integrated thoughts | |
Shapes: | |
- data['thoughts']: :math:`(M, B, N)`, M is the num of thoughts to integrate,\ | |
B is batch_size and N is thought size | |
Examples: | |
>>> comm_net = ATOCCommunicationNet(64) | |
>>> thoughts = torch.randn(2, 3, 64) | |
>>> comm_net(thoughts) | |
""" | |
self._bi_lstm.flatten_parameters() | |
x = data | |
if isinstance(data, Dict): | |
x = data['thoughts'] | |
out, _ = self._bi_lstm(x) | |
return out | |
class ATOCActorNet(nn.Module): | |
""" | |
Overview: | |
The actor network of ATOC. | |
Interface: | |
``__init__``, ``forward`` | |
.. note:: | |
"ATOC paper: The neural networks use ReLU and batch normalization for some hidden layers." | |
""" | |
def __init__( | |
self, | |
obs_shape: Union[Tuple, int], | |
thought_size: int, | |
action_shape: int, | |
n_agent: int, | |
communication: bool = True, | |
agent_per_group: int = 2, | |
initiator_threshold: float = 0.5, | |
attention_embedding_size: int = 64, | |
actor_1_embedding_size: Union[int, None] = None, | |
actor_2_embedding_size: Union[int, None] = None, | |
activation: Optional[nn.Module] = nn.ReLU(), | |
norm_type: Optional[str] = None, | |
): | |
""" | |
Overview: | |
Initialize the actor network of ATOC | |
Arguments: | |
- obs_shape(:obj:`Union[Tuple, int]`): the observation size | |
- thought_size (:obj:`int`): the size of thoughts | |
- action_shape (:obj:`int`): the action size | |
- n_agent (:obj:`int`): the num of agents | |
- agent_per_group (:obj:`int`): the num of agent in each group | |
- initiator_threshold (:obj:`float`): the threshold of becoming an initiator, default set to 0.5 | |
- attention_embedding_size (obj:`int`): the embedding size of attention unit, default set to 64 | |
- actor_1_embedding_size (:obj:`Union[int, None]`): the size of embedding size of actor network part1, \ | |
if None, then default set to thought size | |
- actor_2_embedding_size (:obj:`Union[int, None]`): the size of embedding size of actor network part2, \ | |
if None, then default set to thought size | |
""" | |
super(ATOCActorNet, self).__init__() | |
# now only support obs_shape of shape (O_dim, ) | |
self._obs_shape = squeeze(obs_shape) | |
self._thought_size = thought_size | |
self._act_shape = action_shape | |
self._n_agent = n_agent | |
self._communication = communication | |
self._agent_per_group = agent_per_group | |
self._initiator_threshold = initiator_threshold | |
if not actor_1_embedding_size: | |
actor_1_embedding_size = self._thought_size | |
if not actor_2_embedding_size: | |
actor_2_embedding_size = self._thought_size | |
# Actor Net(I) | |
self.actor_1 = MLP( | |
self._obs_shape, | |
actor_1_embedding_size, | |
self._thought_size, | |
layer_num=2, | |
activation=activation, | |
norm_type=norm_type | |
) | |
# Actor Net(II) | |
self.actor_2 = nn.Sequential( | |
nn.Linear(self._thought_size * 2, actor_2_embedding_size), activation, | |
RegressionHead( | |
actor_2_embedding_size, self._act_shape, 2, final_tanh=True, activation=activation, norm_type=norm_type | |
) | |
) | |
# Communication | |
if self._communication: | |
self.attention = ATOCAttentionUnit(self._thought_size, attention_embedding_size) | |
self.comm_net = ATOCCommunicationNet(self._thought_size) | |
def forward(self, obs: torch.Tensor) -> Dict: | |
""" | |
Overview: | |
Take the input obs, and calculate the corresponding action, group, initiator_prob, thoughts, etc... | |
Arguments: | |
- obs (:obj:`Dict`): the input obs containing the observation | |
Returns: | |
- ret (:obj:`Dict`): the returned output, including action, group, initiator_prob, is_initiator, \ | |
new_thoughts and old_thoughts | |
ReturnsKeys: | |
- necessary: ``action`` | |
- optional: ``group``, ``initiator_prob``, ``is_initiator``, ``new_thoughts``, ``old_thoughts`` | |
Shapes: | |
- obs (:obj:`torch.Tensor`): :math:`(B, A, N)`, where B is batch size, A is agent num, N is obs size | |
- action (:obj:`torch.Tensor`): :math:`(B, A, M)`, where M is action size | |
- group (:obj:`torch.Tensor`): :math:`(B, A, A)` | |
- initiator_prob (:obj:`torch.Tensor`): :math:`(B, A)` | |
- is_initiator (:obj:`torch.Tensor`): :math:`(B, A)` | |
- new_thoughts (:obj:`torch.Tensor`): :math:`(B, A, M)` | |
- old_thoughts (:obj:`torch.Tensor`): :math:`(B, A, M)` | |
Examples: | |
>>> actor_net = ATOCActorNet(64, 64, 64, 3) | |
>>> obs = torch.randn(2, 3, 64) | |
>>> actor_net(obs) | |
""" | |
assert len(obs.shape) == 3 | |
self._cur_batch_size = obs.shape[0] | |
B, A, N = obs.shape | |
assert A == self._n_agent | |
assert N == self._obs_shape | |
current_thoughts = self.actor_1(obs) # B, A, thought size | |
if self._communication: | |
old_thoughts = current_thoughts.clone().detach() | |
init_prob, is_initiator, group = self._get_initiate_group(old_thoughts) | |
new_thoughts = self._get_new_thoughts(current_thoughts, group, is_initiator) | |
else: | |
new_thoughts = current_thoughts | |
action = self.actor_2(torch.cat([current_thoughts, new_thoughts], dim=-1))['pred'] | |
if self._communication: | |
return { | |
'action': action, | |
'group': group, | |
'initiator_prob': init_prob, | |
'is_initiator': is_initiator, | |
'new_thoughts': new_thoughts, | |
'old_thoughts': old_thoughts, | |
} | |
else: | |
return {'action': action} | |
def _get_initiate_group(self, current_thoughts): | |
""" | |
Overview: | |
Calculate the initiator probability, group and is_initiator | |
Arguments: | |
- current_thoughts (:obj:`torch.Tensor`): tensor of current thoughts | |
Returns: | |
- init_prob (:obj:`torch.Tensor`): tesnor of initiator probability | |
- is_initiator (:obj:`torch.Tensor`): tensor of is initiator | |
- group (:obj:`torch.Tensor`): tensor of group | |
Shapes: | |
- current_thoughts (:obj:`torch.Tensor`): :math:`(B, A, M)`, where M is thought size | |
- init_prob (:obj:`torch.Tensor`): :math:`(B, A)` | |
- is_initiator (:obj:`torch.Tensor`): :math:`(B, A)` | |
- group (:obj:`torch.Tensor`): :math:`(B, A, A)` | |
Examples: | |
>>> actor_net = ATOCActorNet(64, 64, 64, 3) | |
>>> current_thoughts = torch.randn(2, 3, 64) | |
>>> actor_net._get_initiate_group(current_thoughts) | |
""" | |
if not self._communication: | |
raise NotImplementedError | |
init_prob = self.attention(current_thoughts) # B, A | |
is_initiator = (init_prob > self._initiator_threshold) | |
B, A = init_prob.shape[:2] | |
thoughts_pair_dot = current_thoughts.bmm(current_thoughts.transpose(1, 2)) | |
thoughts_square = thoughts_pair_dot.diagonal(0, 1, 2) | |
curr_thought_dists = thoughts_square.unsqueeze(1) - 2 * thoughts_pair_dot + thoughts_square.unsqueeze(2) | |
group = torch.zeros(B, A, A).to(init_prob.device) | |
# "considers the agents in its observable field" | |
# "initiator first chooses collaborators from agents who have not been selected, | |
# then from agents selected by other initiators, | |
# finally from other initiators" | |
# "all based on proximity" | |
# roughly choose m closest as group | |
for b in range(B): | |
for i in range(A): | |
if is_initiator[b][i]: | |
index_seq = curr_thought_dists[b][i].argsort() | |
index_seq = index_seq[:self._agent_per_group] | |
group[b][i][index_seq] = 1 | |
return init_prob, is_initiator, group | |
def _get_new_thoughts(self, current_thoughts, group, is_initiator): | |
""" | |
Overview: | |
Calculate the new thoughts according to current thoughts, group and is_initiator | |
Arguments: | |
- current_thoughts (:obj:`torch.Tensor`): tensor of current thoughts | |
- group (:obj:`torch.Tensor`): tensor of group | |
- is_initiator (:obj:`torch.Tensor`): tensor of is initiator | |
Returns: | |
- new_thoughts (:obj:`torch.Tensor`): tensor of new thoughts | |
Shapes: | |
- current_thoughts (:obj:`torch.Tensor`): :math:`(B, A, M)`, where M is thought size | |
- group: (:obj:`torch.Tensor`): :math:`(B, A, A)` | |
- is_initiator (:obj:`torch.Tensor`): :math:`(B, A)` | |
- new_thoughts (:obj:`torch.Tensor`): :math:`(B, A, M)` | |
Examples: | |
>>> actor_net = ATOCActorNet(64, 64, 64, 3) | |
>>> current_thoughts = torch.randn(2, 3, 64) | |
>>> group = torch.randn(2, 3, 3) | |
>>> is_initiator = torch.randn(2, 3) | |
>>> actor_net._get_new_thoughts(current_thoughts, group, is_initiator) | |
""" | |
if not self._communication: | |
raise NotImplementedError | |
B, A = current_thoughts.shape[:2] | |
new_thoughts = current_thoughts.detach().clone() | |
if len(torch.nonzero(is_initiator)) == 0: | |
return new_thoughts | |
# TODO(nyz) execute communication serially for shared agent in different group | |
thoughts_to_commute = [] | |
for b in range(B): | |
for i in range(A): | |
if is_initiator[b][i]: | |
tmp = [] | |
for j in range(A): | |
if group[b][i][j]: | |
tmp.append(new_thoughts[b][j]) | |
thoughts_to_commute.append(torch.stack(tmp, dim=0)) | |
thoughts_to_commute = torch.stack(thoughts_to_commute, dim=1) # agent_per_group, B_, N | |
integrated_thoughts = self.comm_net(thoughts_to_commute) | |
b_count = 0 | |
for b in range(B): | |
for i in range(A): | |
if is_initiator[b][i]: | |
j_count = 0 | |
for j in range(A): | |
if group[b][i][j]: | |
new_thoughts[b][j] = integrated_thoughts[j_count][b_count] | |
j_count += 1 | |
b_count += 1 | |
return new_thoughts | |
class ATOC(nn.Module): | |
""" | |
Overview: | |
The QAC network of ATOC, a kind of extension of DDPG for MARL. | |
Learning Attentional Communication for Multi-Agent Cooperation | |
https://arxiv.org/abs/1805.07733 | |
Interface: | |
``__init__``, ``forward``, ``compute_critic``, ``compute_actor``, ``optimize_actor_attention`` | |
""" | |
mode = ['compute_actor', 'compute_critic', 'optimize_actor_attention'] | |
def __init__( | |
self, | |
obs_shape: Union[int, SequenceType], | |
action_shape: Union[int, SequenceType], | |
thought_size: int, | |
n_agent: int, | |
communication: bool = True, | |
agent_per_group: int = 2, | |
actor_1_embedding_size: Union[int, None] = None, | |
actor_2_embedding_size: Union[int, None] = None, | |
critic_head_hidden_size: int = 64, | |
critic_head_layer_num: int = 2, | |
activation: Optional[nn.Module] = nn.ReLU(), | |
norm_type: Optional[str] = None, | |
) -> None: | |
""" | |
Overview: | |
Initialize the ATOC QAC network | |
Arguments: | |
- obs_shape(:obj:`Union[Tuple, int]`): the observation space shape | |
- thought_size (:obj:`int`): the size of thoughts | |
- action_shape (:obj:`int`): the action space shape | |
- n_agent (:obj:`int`): the num of agents | |
- agent_per_group (:obj:`int`): the num of agent in each group | |
""" | |
super(ATOC, self).__init__() | |
self._communication = communication | |
self.actor = ATOCActorNet( | |
obs_shape, | |
thought_size, | |
action_shape, | |
n_agent, | |
communication, | |
agent_per_group, | |
actor_1_embedding_size=actor_1_embedding_size, | |
actor_2_embedding_size=actor_2_embedding_size | |
) | |
self.critic = nn.Sequential( | |
nn.Linear(obs_shape + action_shape, critic_head_hidden_size), activation, | |
RegressionHead( | |
critic_head_hidden_size, | |
1, | |
critic_head_layer_num, | |
final_tanh=False, | |
activation=activation, | |
norm_type=norm_type, | |
) | |
) | |
def _compute_delta_q(self, obs: torch.Tensor, actor_outputs: Dict) -> torch.Tensor: | |
""" | |
Overview: | |
calculate the delta_q according to obs and actor_outputs | |
Arguments: | |
- obs (:obj:`torch.Tensor`): the observations | |
- actor_outputs (:obj:`dict`): the output of actors | |
- delta_q (:obj:`Dict`): the calculated delta_q | |
Returns: | |
- delta_q (:obj:`Dict`): the calculated delta_q | |
ArgumentsKeys: | |
- necessary: ``new_thoughts``, ``old_thoughts``, ``group``, ``is_initiator`` | |
Shapes: | |
- obs (:obj:`torch.Tensor`): :math:`(B, A, N)`, where B is batch size, A is agent num, N is obs size | |
- actor_outputs (:obj:`Dict`): the output of actor network, including ``action``, ``new_thoughts``, \ | |
``old_thoughts``, ``group``, ``initiator_prob``, ``is_initiator`` | |
- action (:obj:`torch.Tensor`): :math:`(B, A, M)` where M is action size | |
- new_thoughts (:obj:`torch.Tensor`): :math:`(B, A, M)` where M is thought size | |
- old_thoughts (:obj:`torch.Tensor`): :math:`(B, A, M)` where M is thought size | |
- group (:obj:`torch.Tensor`): :math:`(B, A, A)` | |
- initiator_prob (:obj:`torch.Tensor`): :math:`(B, A)` | |
- is_initiator (:obj:`torch.Tensor`): :math:`(B, A)` | |
- delta_q (:obj:`torch.Tensor`): :math:`(B, A)` | |
Examples: | |
>>> net = ATOC(64, 64, 64, 3) | |
>>> obs = torch.randn(2, 3, 64) | |
>>> actor_outputs = net.compute_actor(obs) | |
>>> net._compute_delta_q(obs, actor_outputs) | |
""" | |
if not self._communication: | |
raise NotImplementedError | |
assert len(obs.shape) == 3 | |
new_thoughts, old_thoughts, group, is_initiator = actor_outputs['new_thoughts'], actor_outputs[ | |
'old_thoughts'], actor_outputs['group'], actor_outputs['is_initiator'] | |
B, A = new_thoughts.shape[:2] | |
curr_delta_q = torch.zeros(B, A).to(new_thoughts.device) | |
with torch.no_grad(): | |
for b in range(B): | |
for i in range(A): | |
if not is_initiator[b][i]: | |
continue | |
q_group = [] | |
actual_q_group = [] | |
for j in range(A): | |
if not group[b][i][j]: | |
continue | |
before_update_action_j = self.actor.actor_2( | |
torch.cat([old_thoughts[b][j], old_thoughts[b][j]], dim=-1) | |
) | |
after_update_action_j = self.actor.actor_2( | |
torch.cat([old_thoughts[b][j], new_thoughts[b][j]], dim=-1) | |
) | |
before_update_input = torch.cat([obs[b][j], before_update_action_j['pred']], dim=-1) | |
before_update_Q_j = self.critic(before_update_input)['pred'] | |
after_update_input = torch.cat([obs[b][j], after_update_action_j['pred']], dim=-1) | |
after_update_Q_j = self.critic(after_update_input)['pred'] | |
q_group.append(before_update_Q_j) | |
actual_q_group.append(after_update_Q_j) | |
q_group = torch.stack(q_group) | |
actual_q_group = torch.stack(actual_q_group) | |
curr_delta_q[b][i] = actual_q_group.mean() - q_group.mean() | |
return curr_delta_q | |
def compute_actor(self, obs: torch.Tensor, get_delta_q: bool = False) -> Dict[str, torch.Tensor]: | |
''' | |
Overview: | |
compute the action according to inputs, call the _compute_delta_q function to compute delta_q | |
Arguments: | |
- obs (:obj:`torch.Tensor`): observation | |
- get_delta_q (:obj:`bool`) : whether need to get delta_q | |
Returns: | |
- outputs (:obj:`Dict`): the output of actor network and delta_q | |
ReturnsKeys: | |
- necessary: ``action`` | |
- optional: ``group``, ``initiator_prob``, ``is_initiator``, ``new_thoughts``, ``old_thoughts``, ``delta_q`` | |
Shapes: | |
- obs (:obj:`torch.Tensor`): :math:`(B, A, N)`, where B is batch size, A is agent num, N is obs size | |
- action (:obj:`torch.Tensor`): :math:`(B, A, M)`, where M is action size | |
- group (:obj:`torch.Tensor`): :math:`(B, A, A)` | |
- initiator_prob (:obj:`torch.Tensor`): :math:`(B, A)` | |
- is_initiator (:obj:`torch.Tensor`): :math:`(B, A)` | |
- new_thoughts (:obj:`torch.Tensor`): :math:`(B, A, M)` | |
- old_thoughts (:obj:`torch.Tensor`): :math:`(B, A, M)` | |
- delta_q (:obj:`torch.Tensor`): :math:`(B, A)` | |
Examples: | |
>>> net = ATOC(64, 64, 64, 3) | |
>>> obs = torch.randn(2, 3, 64) | |
>>> net.compute_actor(obs) | |
''' | |
outputs = self.actor(obs) | |
if get_delta_q and self._communication: | |
delta_q = self._compute_delta_q(obs, outputs) | |
outputs['delta_q'] = delta_q | |
return outputs | |
def compute_critic(self, inputs: Dict) -> Dict: | |
""" | |
Overview: | |
compute the q_value according to inputs | |
Arguments: | |
- inputs (:obj:`Dict`): the inputs contain the obs and action | |
Returns: | |
- outputs (:obj:`Dict`): the output of critic network | |
ArgumentsKeys: | |
- necessary: ``obs``, ``action`` | |
ReturnsKeys: | |
- necessary: ``q_value`` | |
Shapes: | |
- obs (:obj:`torch.Tensor`): :math:`(B, A, N)`, where B is batch size, A is agent num, N is obs size | |
- action (:obj:`torch.Tensor`): :math:`(B, A, M)`, where M is action size | |
- q_value (:obj:`torch.Tensor`): :math:`(B, A)` | |
Examples: | |
>>> net = ATOC(64, 64, 64, 3) | |
>>> obs = torch.randn(2, 3, 64) | |
>>> action = torch.randn(2, 3, 64) | |
>>> net.compute_critic({'obs': obs, 'action': action}) | |
""" | |
obs, action = inputs['obs'], inputs['action'] | |
if len(action.shape) == 2: # (B, A) -> (B, A, 1) | |
action = action.unsqueeze(2) | |
x = torch.cat([obs, action], dim=-1) | |
x = self.critic(x)['pred'] | |
return {'q_value': x} | |
def optimize_actor_attention(self, inputs: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: | |
""" | |
Overview: | |
return the actor attention loss | |
Arguments: | |
- inputs (:obj:`Dict`): the inputs contain the delta_q, initiator_prob, and is_initiator | |
Returns | |
- loss (:obj:`Dict`): the loss of actor attention unit | |
ArgumentsKeys: | |
- necessary: ``delta_q``, ``initiator_prob``, ``is_initiator`` | |
ReturnsKeys: | |
- necessary: ``loss`` | |
Shapes: | |
- delta_q (:obj:`torch.Tensor`): :math:`(B, A)` | |
- initiator_prob (:obj:`torch.Tensor`): :math:`(B, A)` | |
- is_initiator (:obj:`torch.Tensor`): :math:`(B, A)` | |
- loss (:obj:`torch.Tensor`): :math:`(1)` | |
Examples: | |
>>> net = ATOC(64, 64, 64, 3) | |
>>> delta_q = torch.randn(2, 3) | |
>>> initiator_prob = torch.randn(2, 3) | |
>>> is_initiator = torch.randn(2, 3) | |
>>> net.optimize_actor_attention( | |
>>> {'delta_q': delta_q, | |
>>> 'initiator_prob': initiator_prob, | |
>>> 'is_initiator': is_initiator}) | |
""" | |
if not self._communication: | |
raise NotImplementedError | |
delta_q = inputs['delta_q'].reshape(-1) | |
init_prob = inputs['initiator_prob'].reshape(-1) | |
is_init = inputs['is_initiator'].reshape(-1) | |
delta_q = delta_q[is_init.nonzero()] | |
init_prob = init_prob[is_init.nonzero()] | |
init_prob = 0.9 * init_prob + 0.05 | |
# judge to avoid nan | |
if init_prob.shape == (0, 1): | |
actor_attention_loss = torch.FloatTensor([-0.0]).to(delta_q.device) | |
actor_attention_loss.requires_grad = True | |
else: | |
actor_attention_loss = -delta_q * \ | |
torch.log(init_prob) - (1 - delta_q) * torch.log(1 - init_prob) | |
return {'loss': actor_attention_loss.mean()} | |
def forward(self, inputs: Union[torch.Tensor, Dict], mode: str, **kwargs) -> Dict: | |
assert mode in self.mode, "not support forward mode: {}/{}".format(mode, self.mode) | |
return getattr(self, mode)(inputs, **kwargs) | |