Spaces:
Sleeping
Sleeping
from typing import Union, Optional, Dict | |
import torch | |
import torch.nn as nn | |
from easydict import EasyDict | |
from ding.utils import MODEL_REGISTRY, SequenceType, squeeze | |
from ..common import FCEncoder, ConvEncoder, DiscreteHead, DuelingHead, \ | |
MultiHead, RegressionHead, ReparameterizationHead | |
class DiscreteBC(nn.Module): | |
""" | |
Overview: | |
The DiscreteBC network. | |
Interfaces: | |
``__init__``, ``forward`` | |
""" | |
def __init__( | |
self, | |
obs_shape: Union[int, SequenceType], | |
action_shape: Union[int, SequenceType], | |
encoder_hidden_size_list: SequenceType = [128, 128, 64], | |
dueling: bool = True, | |
head_hidden_size: Optional[int] = None, | |
head_layer_num: int = 1, | |
activation: Optional[nn.Module] = nn.ReLU(), | |
norm_type: Optional[str] = None, | |
strides: Optional[list] = None, | |
) -> None: | |
""" | |
Overview: | |
Init the DiscreteBC (encoder + head) Model according to input arguments. | |
Arguments: | |
- obs_shape (:obj:`Union[int, SequenceType]`): Observation space shape, such as 8 or [4, 84, 84]. | |
- action_shape (:obj:`Union[int, SequenceType]`): Action space shape, such as 6 or [2, 3, 3]. | |
- encoder_hidden_size_list (:obj:`SequenceType`): Collection of ``hidden_size`` to pass to ``Encoder``, \ | |
the last element must match ``head_hidden_size``. | |
- dueling (:obj:`dueling`): Whether choose ``DuelingHead`` or ``DiscreteHead(default)``. | |
- head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` of head network. | |
- head_layer_num (:obj:`int`): The number of layers used in the head network to compute Q value output | |
- activation (:obj:`Optional[nn.Module]`): The type of activation function in networks \ | |
if ``None`` then default set it to ``nn.ReLU()``. | |
- norm_type (:obj:`Optional[str]`): The type of normalization in networks, see \ | |
``ding.torch_utils.fc_block`` for more details. | |
- strides (:obj:`Optional[list]`): The strides for each convolution layers, such as [2, 2, 2]. The length \ | |
of this argument should be the same as ``encoder_hidden_size_list``. | |
""" | |
super(DiscreteBC, self).__init__() | |
# For compatibility: 1, (1, ), [4, 32, 32] | |
obs_shape, action_shape = squeeze(obs_shape), squeeze(action_shape) | |
if head_hidden_size is None: | |
head_hidden_size = encoder_hidden_size_list[-1] | |
# FC Encoder | |
if isinstance(obs_shape, int) or len(obs_shape) == 1: | |
self.encoder = FCEncoder(obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type) | |
# Conv Encoder | |
elif len(obs_shape) == 3: | |
if not strides: | |
self.encoder = ConvEncoder( | |
obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type | |
) | |
else: | |
self.encoder = ConvEncoder( | |
obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type, stride=strides | |
) | |
else: | |
raise RuntimeError( | |
"not support obs_shape for pre-defined encoder: {}, please customize your own BC".format(obs_shape) | |
) | |
# Head Type | |
if dueling: | |
head_cls = DuelingHead | |
else: | |
head_cls = DiscreteHead | |
multi_head = not isinstance(action_shape, int) | |
if multi_head: | |
self.head = MultiHead( | |
head_cls, | |
head_hidden_size, | |
action_shape, | |
layer_num=head_layer_num, | |
activation=activation, | |
norm_type=norm_type | |
) | |
else: | |
self.head = head_cls( | |
head_hidden_size, action_shape, head_layer_num, activation=activation, norm_type=norm_type | |
) | |
def forward(self, x: torch.Tensor) -> Dict: | |
""" | |
Overview: | |
DiscreteBC forward computation graph, input observation tensor to predict q_value. | |
Arguments: | |
- x (:obj:`torch.Tensor`): Observation inputs | |
Returns: | |
- outputs (:obj:`Dict`): DiscreteBC forward outputs, such as q_value. | |
ReturnsKeys: | |
- logit (:obj:`torch.Tensor`): Discrete Q-value output of each action dimension. | |
Shapes: | |
- x (:obj:`torch.Tensor`): :math:`(B, N)`, where B is batch size and N is ``obs_shape`` | |
- logit (:obj:`torch.FloatTensor`): :math:`(B, M)`, where B is batch size and M is ``action_shape`` | |
Examples: | |
>>> model = DiscreteBC(32, 6) # arguments: 'obs_shape' and 'action_shape' | |
>>> inputs = torch.randn(4, 32) | |
>>> outputs = model(inputs) | |
>>> assert isinstance(outputs, dict) and outputs['logit'].shape == torch.Size([4, 6]) | |
""" | |
x = self.encoder(x) | |
x = self.head(x) | |
return x | |
class ContinuousBC(nn.Module): | |
""" | |
Overview: | |
The ContinuousBC network. | |
Interfaces: | |
``__init__``, ``forward`` | |
""" | |
def __init__( | |
self, | |
obs_shape: Union[int, SequenceType], | |
action_shape: Union[int, SequenceType, EasyDict], | |
action_space: str, | |
actor_head_hidden_size: int = 64, | |
actor_head_layer_num: int = 1, | |
activation: Optional[nn.Module] = nn.ReLU(), | |
norm_type: Optional[str] = None, | |
) -> None: | |
""" | |
Overview: | |
Initialize the ContinuousBC Model according to input arguments. | |
Arguments: | |
- obs_shape (:obj:`Union[int, SequenceType]`): Observation's shape, such as 128, (156, ). | |
- action_shape (:obj:`Union[int, SequenceType, EasyDict]`): Action's shape, such as 4, (3, ), \ | |
EasyDict({'action_type_shape': 3, 'action_args_shape': 4}). | |
- action_space (:obj:`str`): The type of action space, \ | |
including [``regression``, ``reparameterization``]. | |
- actor_head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` to pass to actor head. | |
- actor_head_layer_num (:obj:`int`): The num of layers used in the network to compute Q value output \ | |
for actor head. | |
- activation (:obj:`Optional[nn.Module]`): The type of activation function to use in ``MLP`` \ | |
after each FC layer, if ``None`` then default set to ``nn.ReLU()``. | |
- norm_type (:obj:`Optional[str]`): The type of normalization to after network layer (FC, Conv), \ | |
see ``ding.torch_utils.network`` for more details. | |
""" | |
super(ContinuousBC, self).__init__() | |
obs_shape: int = squeeze(obs_shape) | |
action_shape = squeeze(action_shape) | |
self.action_shape = action_shape | |
self.action_space = action_space | |
assert self.action_space in ['regression', 'reparameterization'] | |
if self.action_space == 'regression': | |
self.actor = nn.Sequential( | |
nn.Linear(obs_shape, actor_head_hidden_size), activation, | |
RegressionHead( | |
actor_head_hidden_size, | |
action_shape, | |
actor_head_layer_num, | |
final_tanh=True, | |
activation=activation, | |
norm_type=norm_type | |
) | |
) | |
elif self.action_space == 'reparameterization': | |
self.actor = nn.Sequential( | |
nn.Linear(obs_shape, actor_head_hidden_size), activation, | |
ReparameterizationHead( | |
actor_head_hidden_size, | |
action_shape, | |
actor_head_layer_num, | |
sigma_type='conditioned', | |
activation=activation, | |
norm_type=norm_type | |
) | |
) | |
def forward(self, inputs: Union[torch.Tensor, Dict[str, torch.Tensor]]) -> Dict: | |
""" | |
Overview: | |
The unique execution (forward) method of ContinuousBC. | |
Arguments: | |
- inputs (:obj:`torch.Tensor`): Observation data, defaults to tensor. | |
Returns: | |
- output (:obj:`Dict`): Output dict data, including different key-values among distinct action_space. | |
ReturnsKeys: | |
- action (:obj:`torch.Tensor`): action output of actor network, \ | |
with shape :math:`(B, action_shape)`. | |
- logit (:obj:`List[torch.Tensor]`): reparameterized action output of actor network, \ | |
with shape :math:`(B, action_shape)`. | |
Shapes: | |
- inputs (:obj:`torch.Tensor`): :math:`(B, N)`, where B is batch size and N is ``obs_shape`` | |
- action (:obj:`torch.FloatTensor`): :math:`(B, M)`, where B is batch size and M is ``action_shape`` | |
- logit (:obj:`List[torch.FloatTensor]`): :math:`(B, M)`, where B is batch size and M is ``action_shape`` | |
Examples (Regression): | |
>>> model = ContinuousBC(32, 6, action_space='regression') | |
>>> inputs = torch.randn(4, 32) | |
>>> outputs = model(inputs) | |
>>> assert isinstance(outputs, dict) and outputs['action'].shape == torch.Size([4, 6]) | |
Examples (Reparameterization): | |
>>> model = ContinuousBC(32, 6, action_space='reparameterization') | |
>>> inputs = torch.randn(4, 32) | |
>>> outputs = model(inputs) | |
>>> assert isinstance(outputs, dict) and outputs['logit'][0].shape == torch.Size([4, 6]) | |
>>> assert outputs['logit'][1].shape == torch.Size([4, 6]) | |
""" | |
if self.action_space == 'regression': | |
x = self.actor(inputs) | |
return {'action': x['pred']} | |
elif self.action_space == 'reparameterization': | |
x = self.actor(inputs) | |
return {'logit': [x['mu'], x['sigma']]} | |