Spaces:
Sleeping
Sleeping
from typing import Union, List | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from functools import reduce | |
from ding.utils import list_split, MODEL_REGISTRY | |
from ding.torch_utils import fc_block, MLP, ScaledDotProductAttention | |
from .q_learning import DRQN | |
from .qmix import Mixer | |
class CollaQMultiHeadAttention(nn.Module): | |
""" | |
Overview: | |
The head of collaq attention module. | |
Interface: | |
``__init__``, ``forward`` | |
""" | |
def __init__( | |
self, | |
n_head: int, | |
d_model_q: int, | |
d_model_v: int, | |
d_k: int, | |
d_v: int, | |
d_out: int, | |
dropout: float = 0., | |
activation: nn.Module = nn.ReLU() | |
): | |
""" | |
Overview: | |
initialize the head of collaq attention module | |
Arguments: | |
- n_head (:obj:`int`): the num of head | |
- d_model_q (:obj:`int`): the size of input q | |
- d_model_v (:obj:`int`): the size of input v | |
- d_k (:obj:`int`): the size of k, used by Scaled Dot Product Attention | |
- d_v (:obj:`int`): the size of v, used by Scaled Dot Product Attention | |
- d_out (:obj:`int`): the size of output q | |
- dropout (:obj:`float`): Dropout ratio, defaults to 0. | |
- activation (:obj:`nn.Module`): Activation in FFN after attention. | |
""" | |
super(CollaQMultiHeadAttention, self).__init__() | |
self.act = activation | |
self.n_head = n_head | |
self.d_k = d_k | |
self.d_v = d_v | |
self.w_qs = nn.Linear(d_model_q, n_head * d_k) | |
self.w_ks = nn.Linear(d_model_v, n_head * d_k) | |
self.w_vs = nn.Linear(d_model_v, n_head * d_v) | |
self.fc1 = fc_block(n_head * d_v, n_head * d_v, activation=self.act) | |
self.fc2 = fc_block(n_head * d_v, d_out) | |
self.attention = ScaledDotProductAttention(d_k=d_k) | |
self.layer_norm_q = nn.LayerNorm(n_head * d_k, eps=1e-6) | |
self.layer_norm_k = nn.LayerNorm(n_head * d_k, eps=1e-6) | |
self.layer_norm_v = nn.LayerNorm(n_head * d_v, eps=1e-6) | |
def forward(self, q, k, v, mask=None): | |
""" | |
Overview: | |
forward computation graph of collaQ multi head attention net. | |
Arguments: | |
- q (:obj:`torch.nn.Sequential`): the transformer information q | |
- k (:obj:`torch.nn.Sequential`): the transformer information k | |
- v (:obj:`torch.nn.Sequential`): the transformer information v | |
Returns: | |
- q (:obj:`torch.nn.Sequential`): the transformer output q | |
- residual (:obj:`torch.nn.Sequential`): the transformer output residual | |
Shapes: | |
- q (:obj:`torch.nn.Sequential`): :math:`(B, L, N)` where B is batch_size, L is sequence length, \ | |
N is the size of input q | |
- k (:obj:`torch.nn.Sequential`): :math:`(B, L, N)` where B is batch_size, L is sequence length, \ | |
N is the size of input k | |
- v (:obj:`torch.nn.Sequential`): :math:`(B, L, N)` where B is batch_size, L is sequence length, \ | |
N is the size of input v | |
- q (:obj:`torch.nn.Sequential`): :math:`(B, L, N)` where B is batch_size, L is sequence length, \ | |
N is the size of output q | |
- residual (:obj:`torch.nn.Sequential`): :math:`(B, L, N)` where B is batch_size, L is sequence length, \ | |
N is the size of output residual | |
Examples: | |
>>> net = CollaQMultiHeadAttention(1, 2, 3, 4, 5, 6) | |
>>> q = torch.randn(1, 2, 2) | |
>>> k = torch.randn(1, 3, 3) | |
>>> v = torch.randn(1, 3, 3) | |
>>> q, residual = net(q, k, v) | |
""" | |
d_k, d_v, n_head = self.d_k, self.d_v, self.n_head | |
batch_size, len_q, len_k, len_v = q.size(0), q.size(1), k.size(1), v.size(1) | |
# Pass through the pre-attention projection: batch_size x len_q x (n_head * d_v) | |
# Separate different heads: batch_size x len_q x n_head x d_v | |
q = self.w_qs(q).view(batch_size, len_q, n_head, d_k) | |
k = self.w_ks(k).view(batch_size, len_k, n_head, d_k) | |
v = self.w_vs(v).view(batch_size, len_v, n_head, d_v) | |
residual = q | |
# Transpose for attention dot product: batch_size x n_head x len_q x d_v | |
q, k, v = self.layer_norm_q(q).transpose(1, 2), self.layer_norm_k(k).transpose( | |
1, 2 | |
), self.layer_norm_v(v).transpose(1, 2) | |
# Unsqueeze the mask tensor for head axis broadcasting | |
if mask is not None: | |
mask = mask.unsqueeze(1) | |
q = self.attention(q, k, v, mask=mask) | |
# Transpose to move the head dimension back: batch_size x len_q x n_head x d_v | |
# Combine the last two dimensions to concatenate all the heads together: batch_size x len_q x (n*dv) | |
q = q.transpose(1, 2).contiguous().view(batch_size, len_q, -1) | |
q = self.fc2(self.fc1(q)) | |
return q, residual | |
class CollaQSMACAttentionModule(nn.Module): | |
""" | |
Overview: | |
Collaq attention module. Used to get agent's attention observation. It includes agent's observation\ | |
and agent's part of the observation information of the agent's concerned allies | |
Interface: | |
``__init__``, ``_cut_obs``, ``forward`` | |
""" | |
def __init__( | |
self, | |
q_dim: int, | |
v_dim: int, | |
self_feature_range: List[int], | |
ally_feature_range: List[int], | |
attention_size: int, | |
activation: nn.Module = nn.ReLU() | |
): | |
""" | |
Overview: | |
initialize collaq attention module | |
Arguments: | |
- q_dim (:obj:`int`): the dimension of transformer output q | |
- v_dim (:obj:`int`): the dimension of transformer output v | |
- self_features (:obj:`torch.Tensor`): output self agent's attention observation | |
- ally_features (:obj:`torch.Tensor`): output ally agent's attention observation | |
- attention_size (:obj:`int`): the size of attention net layer | |
- activation (:obj:`nn.Module`): Activation in FFN after attention. | |
""" | |
super(CollaQSMACAttentionModule, self).__init__() | |
self.self_feature_range = self_feature_range | |
self.ally_feature_range = ally_feature_range | |
self.attention_layer = CollaQMultiHeadAttention( | |
1, q_dim, v_dim, attention_size, attention_size, attention_size, activation=activation | |
) | |
def _cut_obs(self, obs: torch.Tensor): | |
""" | |
Overview: | |
cut the observed information into self's observation and allay's observation | |
Arguments: | |
- obs (:obj:`torch.Tensor`): input each agent's observation | |
Returns: | |
- self_features (:obj:`torch.Tensor`): output self agent's attention observation | |
- ally_features (:obj:`torch.Tensor`): output ally agent's attention observation | |
Shapes: | |
- obs (:obj:`torch.Tensor`): :math:`(T, B, A, N)` where T is timestep, B is batch_size, \ | |
A is agent_num, N is obs_shape | |
- self_features (:obj:`torch.Tensor`): :math:`(T, B, A, N)` where T is timestep, B is batch_size, \ | |
A is agent_num, N is self_feature_range[1] - self_feature_range[0] | |
- ally_features (:obj:`torch.Tensor`): :math:`(T, B, A, N)` where T is timestep, B is batch_size, \ | |
A is agent_num, N is ally_feature_range[1] - ally_feature_range[0] | |
""" | |
# obs shape = (T, B, A, obs_shape) | |
self_features = obs[:, :, :, self.self_feature_range[0]:self.self_feature_range[1]] | |
ally_features = obs[:, :, :, self.ally_feature_range[0]:self.ally_feature_range[1]] | |
return self_features, ally_features | |
def forward(self, inputs: torch.Tensor): | |
""" | |
Overview: | |
forward computation to get agent's attention observation information | |
Arguments: | |
- obs (:obj:`torch.Tensor`): input each agent's observation | |
Returns: | |
- obs (:obj:`torch.Tensor`): output agent's attention observation | |
Shapes: | |
- obs (:obj:`torch.Tensor`): :math:`(T, B, A, N)` where T is timestep, B is batch_size, \ | |
A is agent_num, N is obs_shape | |
""" | |
# obs shape = (T, B ,A, obs_shape) | |
obs = inputs | |
self_features, ally_features = self._cut_obs(obs) | |
T, B, A, _ = self_features.shape | |
self_features = self_features.reshape(T * B * A, 1, -1) | |
ally_features = ally_features.reshape(T * B * A, A - 1, -1) | |
self_features, ally_features = self.attention_layer(self_features, ally_features, ally_features) | |
self_features = self_features.reshape(T, B, A, -1) | |
ally_features = ally_features.reshape(T, B, A, -1) | |
# note: we assume self_feature is near the ally_feature here so we can do this concat | |
obs = torch.cat( | |
[ | |
obs[:, :, :, :self.self_feature_range[0]], self_features, ally_features, | |
obs[:, :, :, self.ally_feature_range[1]:] | |
], | |
dim=-1 | |
) | |
return obs | |
class CollaQ(nn.Module): | |
""" | |
Overview: | |
The network of CollaQ (Collaborative Q-learning) algorithm. | |
It includes two parts: q_network and q_alone_network. | |
The q_network is used to get the q_value of the agent's observation and \ | |
the agent's part of the observation information of the agent's concerned allies. | |
The q_alone_network is used to get the q_value of the agent's observation and \ | |
the agent's observation information without the agent's concerned allies. | |
Multi-Agent Collaboration via Reward Attribution Decomposition | |
https://arxiv.org/abs/2010.08531 | |
Interface: | |
``__init__``, ``forward``, ``_setup_global_encoder`` | |
""" | |
def __init__( | |
self, | |
agent_num: int, | |
obs_shape: int, | |
alone_obs_shape: int, | |
global_obs_shape: int, | |
action_shape: int, | |
hidden_size_list: list, | |
attention: bool = False, | |
self_feature_range: Union[List[int], None] = None, | |
ally_feature_range: Union[List[int], None] = None, | |
attention_size: int = 32, | |
mixer: bool = True, | |
lstm_type: str = 'gru', | |
activation: nn.Module = nn.ReLU(), | |
dueling: bool = False, | |
) -> None: | |
""" | |
Overview: | |
Initialize Collaq network. | |
Arguments: | |
- agent_num (:obj:`int`): the number of agent | |
- obs_shape (:obj:`int`): the dimension of each agent's observation state | |
- alone_obs_shape (:obj:`int`): the dimension of each agent's observation state without\ | |
other agents | |
- global_obs_shape (:obj:`int`): the dimension of global observation state | |
- action_shape (:obj:`int`): the dimension of action shape | |
- hidden_size_list (:obj:`list`): the list of hidden size | |
- attention (:obj:`bool`): use attention module or not, default to False | |
- self_feature_range (:obj:`Union[List[int], None]`): the agent's feature range | |
- ally_feature_range (:obj:`Union[List[int], None]`): the agent ally's feature range | |
- attention_size (:obj:`int`): the size of attention net layer | |
- mixer (:obj:`bool`): use mixer net or not, default to True | |
- lstm_type (:obj:`str`): use lstm or gru, default to gru | |
- activation (:obj:`nn.Module`): Activation function in network, defaults to nn.ReLU(). | |
- dueling (:obj:`bool`): use dueling head or not, default to False. | |
""" | |
super(CollaQ, self).__init__() | |
self.attention = attention | |
self.attention_size = attention_size | |
self._act = activation | |
self.mixer = mixer | |
if not self.attention: | |
self._q_network = DRQN( | |
obs_shape, action_shape, hidden_size_list, lstm_type=lstm_type, dueling=dueling, activation=activation | |
) | |
else: | |
# TODO set the attention layer here beautifully | |
self._self_attention = CollaQSMACAttentionModule( | |
self_feature_range[1] - self_feature_range[0], | |
(ally_feature_range[1] - ally_feature_range[0]) // (agent_num - 1), | |
self_feature_range, | |
ally_feature_range, | |
attention_size, | |
activation=activation | |
) | |
# TODO get the obs_dim_after_attention here beautifully | |
obs_shape_after_attention = self._self_attention( | |
# torch.randn( | |
# 1, 1, (ally_feature_range[1] - ally_feature_range[0]) // | |
# ((self_feature_range[1] - self_feature_range[0])*2) + 1, obs_dim | |
# ) | |
torch.randn(1, 1, agent_num, obs_shape) | |
).shape[-1] | |
self._q_network = DRQN( | |
obs_shape_after_attention, | |
action_shape, | |
hidden_size_list, | |
lstm_type=lstm_type, | |
dueling=dueling, | |
activation=activation | |
) | |
self._q_alone_network = DRQN( | |
alone_obs_shape, | |
action_shape, | |
hidden_size_list, | |
lstm_type=lstm_type, | |
dueling=dueling, | |
activation=activation | |
) | |
embedding_size = hidden_size_list[-1] | |
if self.mixer: | |
self._mixer = Mixer(agent_num, global_obs_shape, embedding_size, activation=activation) | |
self._global_state_encoder = nn.Identity() | |
def forward(self, data: dict, single_step: bool = True) -> dict: | |
""" | |
Overview: | |
The forward method calculates the q_value of each agent and the total q_value of all agents. | |
The q_value of each agent is calculated by the q_network, and the total q_value is calculated by the mixer. | |
Arguments: | |
- data (:obj:`dict`): input data dict with keys ['obs', 'prev_state', 'action'] | |
- agent_state (:obj:`torch.Tensor`): each agent local state(obs) | |
- agent_alone_state (:obj:`torch.Tensor`): each agent's local state alone, \ | |
in smac setting is without ally feature(obs_along) | |
- global_state (:obj:`torch.Tensor`): global state(obs) | |
- prev_state (:obj:`list`): previous rnn state, should include 3 parts: \ | |
one hidden state of q_network, and two hidden state if q_alone_network for obs and obs_alone inputs | |
- action (:obj:`torch.Tensor` or None): if action is None, use argmax q_value index as action to\ | |
calculate ``agent_q_act`` | |
- single_step (:obj:`bool`): whether single_step forward, if so, add timestep dim before forward and\ | |
remove it after forward | |
Return: | |
- ret (:obj:`dict`): output data dict with keys ['total_q', 'logit', 'next_state'] | |
- total_q (:obj:`torch.Tensor`): total q_value, which is the result of mixer network | |
- agent_q (:obj:`torch.Tensor`): each agent q_value | |
- next_state (:obj:`list`): next rnn state | |
Shapes: | |
- agent_state (:obj:`torch.Tensor`): :math:`(T, B, A, N)`, where T is timestep, B is batch_size\ | |
A is agent_num, N is obs_shape | |
- global_state (:obj:`torch.Tensor`): :math:`(T, B, M)`, where M is global_obs_shape | |
- prev_state (:obj:`list`): math:`(B, A)`, a list of length B, and each element is a list of length A | |
- action (:obj:`torch.Tensor`): :math:`(T, B, A)` | |
- total_q (:obj:`torch.Tensor`): :math:`(T, B)` | |
- agent_q (:obj:`torch.Tensor`): :math:`(T, B, A, P)`, where P is action_shape | |
- next_state (:obj:`list`): math:`(B, A)`, a list of length B, and each element is a list of length A | |
Examples: | |
>>> collaQ_model = CollaQ( | |
>>> agent_num=4, | |
>>> obs_shape=32, | |
>>> alone_obs_shape=24, | |
>>> global_obs_shape=32 * 4, | |
>>> action_shape=9, | |
>>> hidden_size_list=[128, 64], | |
>>> self_feature_range=[8, 10], | |
>>> ally_feature_range=[10, 16], | |
>>> attention_size=64, | |
>>> mixer=True, | |
>>> activation=torch.nn.Tanh() | |
>>> ) | |
>>> data={ | |
>>> 'obs': { | |
>>> 'agent_state': torch.randn(8, 4, 4, 32), | |
>>> 'agent_alone_state': torch.randn(8, 4, 4, 24), | |
>>> 'agent_alone_padding_state': torch.randn(8, 4, 4, 32), | |
>>> 'global_state': torch.randn(8, 4, 32 * 4), | |
>>> 'action_mask': torch.randint(0, 2, size=(8, 4, 4, 9)) | |
>>> }, | |
>>> 'prev_state': [[[None for _ in range(4)] for _ in range(3)] for _ in range(4)], | |
>>> 'action': torch.randint(0, 9, size=(8, 4, 4)) | |
>>> } | |
>>> output = collaQ_model(data, single_step=False) | |
""" | |
agent_state, agent_alone_state = data['obs']['agent_state'], data['obs']['agent_alone_state'] | |
agent_alone_padding_state = data['obs']['agent_alone_padding_state'] | |
global_state, prev_state = data['obs']['global_state'], data['prev_state'] | |
# TODO find a better way to implement agent_along_padding_state | |
action = data.get('action', None) | |
if single_step: | |
agent_state, agent_alone_state, agent_alone_padding_state, global_state = agent_state.unsqueeze( | |
0 | |
), agent_alone_state.unsqueeze(0), agent_alone_padding_state.unsqueeze(0), global_state.unsqueeze(0) | |
T, B, A = agent_state.shape[:3] | |
if self.attention: | |
agent_state = self._self_attention(agent_state) | |
agent_alone_padding_state = self._self_attention(agent_alone_padding_state) | |
# prev state should be of size (B, 3, A) hidden_size) | |
""" | |
Note: to achieve such work, we should change the init_fn of hidden_state plugin in collaQ policy | |
""" | |
assert len(prev_state) == B and all([len(p) == 3 for p in prev_state]) and all( | |
[len(q) == A] for p in prev_state for q in p | |
), '{}-{}-{}-{}'.format([type(p) for p in prev_state], B, A, len(prev_state[0])) | |
alone_prev_state = [[None for _ in range(A)] for _ in range(B)] | |
colla_prev_state = [[None for _ in range(A)] for _ in range(B)] | |
colla_alone_prev_state = [[None for _ in range(A)] for _ in range(B)] | |
for i in range(B): | |
for j in range(3): | |
for k in range(A): | |
if j == 0: | |
alone_prev_state[i][k] = prev_state[i][j][k] | |
elif j == 1: | |
colla_prev_state[i][k] = prev_state[i][j][k] | |
elif j == 2: | |
colla_alone_prev_state[i][k] = prev_state[i][j][k] | |
alone_prev_state = reduce(lambda x, y: x + y, alone_prev_state) | |
colla_prev_state = reduce(lambda x, y: x + y, colla_prev_state) | |
colla_alone_prev_state = reduce(lambda x, y: x + y, colla_alone_prev_state) | |
agent_state = agent_state.reshape(T, -1, *agent_state.shape[3:]) | |
agent_alone_state = agent_alone_state.reshape(T, -1, *agent_alone_state.shape[3:]) | |
agent_alone_padding_state = agent_alone_padding_state.reshape(T, -1, *agent_alone_padding_state.shape[3:]) | |
colla_output = self._q_network( | |
{ | |
'obs': agent_state, | |
'prev_state': colla_prev_state, | |
'enable_fast_timestep': True | |
} | |
) | |
colla_alone_output = self._q_network( | |
{ | |
'obs': agent_alone_padding_state, | |
'prev_state': colla_alone_prev_state, | |
'enable_fast_timestep': True | |
} | |
) | |
alone_output = self._q_alone_network( | |
{ | |
'obs': agent_alone_state, | |
'prev_state': alone_prev_state, | |
'enable_fast_timestep': True | |
} | |
) | |
agent_alone_q, alone_next_state = alone_output['logit'], alone_output['next_state'] | |
agent_colla_alone_q, colla_alone_next_state = colla_alone_output['logit'], colla_alone_output['next_state'] | |
agent_colla_q, colla_next_state = colla_output['logit'], colla_output['next_state'] | |
colla_next_state, _ = list_split(colla_next_state, step=A) | |
alone_next_state, _ = list_split(alone_next_state, step=A) | |
colla_alone_next_state, _ = list_split(colla_alone_next_state, step=A) | |
next_state = list( | |
map(lambda x: [x[0], x[1], x[2]], zip(alone_next_state, colla_next_state, colla_alone_next_state)) | |
) | |
agent_alone_q = agent_alone_q.reshape(T, B, A, -1) | |
agent_colla_alone_q = agent_colla_alone_q.reshape(T, B, A, -1) | |
agent_colla_q = agent_colla_q.reshape(T, B, A, -1) | |
total_q_before_mix = agent_alone_q + agent_colla_q - agent_colla_alone_q | |
# total_q_before_mix = agent_colla_q | |
# total_q_before_mix = agent_alone_q | |
agent_q = total_q_before_mix | |
if action is None: | |
# For target forward process | |
if len(data['obs']['action_mask'].shape) == 3: | |
action_mask = data['obs']['action_mask'].unsqueeze(0) | |
else: | |
action_mask = data['obs']['action_mask'] | |
agent_q[action_mask == 0.0] = -9999999 | |
action = agent_q.argmax(dim=-1) | |
agent_q_act = torch.gather(agent_q, dim=-1, index=action.unsqueeze(-1)) | |
agent_q_act = agent_q_act.squeeze(-1) # T, B, A | |
if self.mixer: | |
global_state_embedding = self._global_state_encoder(global_state) | |
total_q = self._mixer(agent_q_act, global_state_embedding) | |
else: | |
total_q = agent_q_act.sum(-1) | |
if single_step: | |
total_q, agent_q, agent_colla_alone_q = total_q.squeeze(0), agent_q.squeeze(0), agent_colla_alone_q.squeeze( | |
0 | |
) | |
return { | |
'total_q': total_q, | |
'logit': agent_q, | |
'agent_colla_alone_q': agent_colla_alone_q * data['obs']['action_mask'], | |
'next_state': next_state, | |
'action_mask': data['obs']['action_mask'] | |
} | |
def _setup_global_encoder(self, global_obs_shape: int, embedding_size: int) -> torch.nn.Module: | |
""" | |
Overview: | |
Used to encoder global observation. | |
Arguments: | |
- global_obs_shape (:obj:`int`): the dimension of global observation state | |
- embedding_size (:obj:`int`): the dimension of state emdedding | |
Returns: | |
- outputs (:obj:`torch.nn.Module`): Global observation encoding network | |
""" | |
return MLP(global_obs_shape, embedding_size, embedding_size, 2, activation=self._act) | |