Spaces:
Sleeping
Sleeping
from typing import Union, Dict, Optional | |
import torch | |
import torch.nn as nn | |
from ding.torch_utils import get_lstm | |
from ding.utils import SequenceType, squeeze, MODEL_REGISTRY | |
from ding.model.template.q_learning import parallel_wrapper | |
from ..common import ReparameterizationHead, RegressionHead, DiscreteHead, \ | |
FCEncoder, ConvEncoder | |
class RNNLayer(nn.Module): | |
def __init__(self, lstm_type, input_size, hidden_size, res_link: bool = False): | |
super(RNNLayer, self).__init__() | |
self.rnn = get_lstm(lstm_type, input_size=input_size, hidden_size=hidden_size) | |
self.res_link = res_link | |
def forward(self, x, prev_state, inference: bool = False): | |
""" | |
Forward pass of the RNN layer. | |
If inference is True, sequence length of input is set to 1. | |
If res_link is True, a residual link is added to the output. | |
""" | |
# x: obs_embedding | |
if self.res_link: | |
a = x | |
if inference: | |
x = x.unsqueeze(0) # for rnn input, put the seq_len of x as 1 instead of none. | |
# prev_state: DataType: List[Tuple[torch.Tensor]]; Initially, it is a list of None | |
x, next_state = self.rnn(x, prev_state) | |
x = x.squeeze(0) # to delete the seq_len dim to match head network input | |
if self.res_link: | |
x = x + a | |
return {'output': x, 'next_state': next_state} | |
else: | |
# lstm_embedding stores all hidden_state | |
lstm_embedding = [] | |
hidden_state_list = [] | |
for t in range(x.shape[0]): # T timesteps | |
# use x[t:t+1] but not x[t] can keep original dimension | |
output, prev_state = self.rnn(x[t:t + 1], prev_state) # output: (1,B, head_hidden_size) | |
lstm_embedding.append(output) | |
hidden_state = [p['h'] for p in prev_state] | |
# only keep ht, {list: x.shape[0]{Tensor:(1, batch_size, head_hidden_size)}} | |
hidden_state_list.append(torch.cat(hidden_state, dim=1)) | |
x = torch.cat(lstm_embedding, 0) # (T, B, head_hidden_size) | |
if self.res_link: | |
x = x + a | |
all_hidden_state = torch.cat(hidden_state_list, dim=0) | |
return {'output': x, 'next_state': prev_state, 'hidden_state': all_hidden_state} | |
class HAVAC(nn.Module): | |
""" | |
Overview: | |
The HAVAC model of each agent for HAPPO. | |
Interfaces: | |
``__init__``, ``forward`` | |
""" | |
mode = ['compute_actor', 'compute_critic', 'compute_actor_critic'] | |
def __init__( | |
self, | |
agent_obs_shape: Union[int, SequenceType], | |
global_obs_shape: Union[int, SequenceType], | |
action_shape: Union[int, SequenceType], | |
agent_num: int, | |
use_lstm: bool = False, | |
lstm_type: str = 'gru', | |
encoder_hidden_size_list: SequenceType = [128, 128, 64], | |
actor_head_hidden_size: int = 64, | |
actor_head_layer_num: int = 2, | |
critic_head_hidden_size: int = 64, | |
critic_head_layer_num: int = 1, | |
action_space: str = 'discrete', | |
activation: Optional[nn.Module] = nn.ReLU(), | |
norm_type: Optional[str] = None, | |
sigma_type: Optional[str] = 'independent', | |
bound_type: Optional[str] = None, | |
res_link: bool = False, | |
) -> None: | |
r""" | |
Overview: | |
Init the VAC Model for HAPPO according to arguments. | |
Arguments: | |
- agent_obs_shape (:obj:`Union[int, SequenceType]`): Observation's space for single agent. | |
- global_obs_shape (:obj:`Union[int, SequenceType]`): Observation's space for global agent | |
- action_shape (:obj:`Union[int, SequenceType]`): Action's space. | |
- agent_num (:obj:`int`): Number of agents. | |
- lstm_type (:obj:`str`): use lstm or gru, default to gru | |
- encoder_hidden_size_list (:obj:`SequenceType`): Collection of ``hidden_size`` to pass to ``Encoder`` | |
- actor_head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` to pass to actor-nn's ``Head``. | |
- actor_head_layer_num (:obj:`int`): | |
The num of layers used in the network to compute Q value output for actor's nn. | |
- critic_head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` to pass to critic-nn's ``Head``. | |
- critic_head_layer_num (:obj:`int`): | |
The num of layers used in the network to compute Q value output for critic's nn. | |
- activation (:obj:`Optional[nn.Module]`): | |
The type of activation function to use in ``MLP`` the after ``layer_fn``, | |
if ``None`` then default set to ``nn.ReLU()`` | |
- norm_type (:obj:`Optional[str]`): | |
The type of normalization to use, see ``ding.torch_utils.fc_block`` for more details` | |
- res_link (:obj:`bool`): use the residual link or not, default to False | |
""" | |
super(HAVAC, self).__init__() | |
self.agent_num = agent_num | |
self.agent_models = nn.ModuleList( | |
[ | |
HAVACAgent( | |
agent_obs_shape=agent_obs_shape, | |
global_obs_shape=global_obs_shape, | |
action_shape=action_shape, | |
use_lstm=use_lstm, | |
action_space=action_space, | |
) for _ in range(agent_num) | |
] | |
) | |
def forward(self, agent_idx, input_data, mode): | |
selected_agent_model = self.agent_models[agent_idx] | |
output = selected_agent_model(input_data, mode) | |
return output | |
class HAVACAgent(nn.Module): | |
""" | |
Overview: | |
The HAVAC model of each agent for HAPPO. | |
Interfaces: | |
``__init__``, ``forward``, ``compute_actor``, ``compute_critic``, ``compute_actor_critic`` | |
""" | |
mode = ['compute_actor', 'compute_critic', 'compute_actor_critic'] | |
def __init__( | |
self, | |
agent_obs_shape: Union[int, SequenceType], | |
global_obs_shape: Union[int, SequenceType], | |
action_shape: Union[int, SequenceType], | |
use_lstm: bool = False, | |
lstm_type: str = 'gru', | |
encoder_hidden_size_list: SequenceType = [128, 128, 64], | |
actor_head_hidden_size: int = 64, | |
actor_head_layer_num: int = 2, | |
critic_head_hidden_size: int = 64, | |
critic_head_layer_num: int = 1, | |
action_space: str = 'discrete', | |
activation: Optional[nn.Module] = nn.ReLU(), | |
norm_type: Optional[str] = None, | |
sigma_type: Optional[str] = 'happo', | |
bound_type: Optional[str] = None, | |
res_link: bool = False, | |
) -> None: | |
r""" | |
Overview: | |
Init the VAC Model for HAPPO according to arguments. | |
Arguments: | |
- agent_obs_shape (:obj:`Union[int, SequenceType]`): Observation's space for single agent. | |
- global_obs_shape (:obj:`Union[int, SequenceType]`): Observation's space for global agent | |
- action_shape (:obj:`Union[int, SequenceType]`): Action's space. | |
- lstm_type (:obj:`str`): use lstm or gru, default to gru | |
- encoder_hidden_size_list (:obj:`SequenceType`): Collection of ``hidden_size`` to pass to ``Encoder`` | |
- actor_head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` to pass to actor-nn's ``Head``. | |
- actor_head_layer_num (:obj:`int`): | |
The num of layers used in the network to compute Q value output for actor's nn. | |
- critic_head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` to pass to critic-nn's ``Head``. | |
- critic_head_layer_num (:obj:`int`): | |
The num of layers used in the network to compute Q value output for critic's nn. | |
- activation (:obj:`Optional[nn.Module]`): | |
The type of activation function to use in ``MLP`` the after ``layer_fn``, | |
if ``None`` then default set to ``nn.ReLU()`` | |
- norm_type (:obj:`Optional[str]`): | |
The type of normalization to use, see ``ding.torch_utils.fc_block`` for more details` | |
- res_link (:obj:`bool`): use the residual link or not, default to False | |
""" | |
super(HAVACAgent, self).__init__() | |
agent_obs_shape: int = squeeze(agent_obs_shape) | |
global_obs_shape: int = squeeze(global_obs_shape) | |
action_shape: int = squeeze(action_shape) | |
self.global_obs_shape, self.agent_obs_shape, self.action_shape = global_obs_shape, agent_obs_shape, action_shape | |
self.action_space = action_space | |
# Encoder Type | |
if isinstance(agent_obs_shape, int) or len(agent_obs_shape) == 1: | |
actor_encoder_cls = FCEncoder | |
elif len(agent_obs_shape) == 3: | |
actor_encoder_cls = ConvEncoder | |
else: | |
raise RuntimeError( | |
"not support obs_shape for pre-defined encoder: {}, please customize your own VAC". | |
format(agent_obs_shape) | |
) | |
if isinstance(global_obs_shape, int) or len(global_obs_shape) == 1: | |
critic_encoder_cls = FCEncoder | |
elif len(global_obs_shape) == 3: | |
critic_encoder_cls = ConvEncoder | |
else: | |
raise RuntimeError( | |
"not support obs_shape for pre-defined encoder: {}, please customize your own VAC". | |
format(global_obs_shape) | |
) | |
# We directly connect the Head after a Liner layer instead of using the 3-layer FCEncoder. | |
# In SMAC task it can obviously improve the performance. | |
# Users can change the model according to their own needs. | |
self.actor_encoder = actor_encoder_cls( | |
obs_shape=agent_obs_shape, | |
hidden_size_list=encoder_hidden_size_list, | |
activation=activation, | |
norm_type=norm_type | |
) | |
self.critic_encoder = critic_encoder_cls( | |
obs_shape=global_obs_shape, | |
hidden_size_list=encoder_hidden_size_list, | |
activation=activation, | |
norm_type=norm_type | |
) | |
# RNN part | |
self.use_lstm = use_lstm | |
if self.use_lstm: | |
self.actor_rnn = RNNLayer( | |
lstm_type, | |
input_size=encoder_hidden_size_list[-1], | |
hidden_size=actor_head_hidden_size, | |
res_link=res_link | |
) | |
self.critic_rnn = RNNLayer( | |
lstm_type, | |
input_size=encoder_hidden_size_list[-1], | |
hidden_size=critic_head_hidden_size, | |
res_link=res_link | |
) | |
# Head Type | |
self.critic_head = RegressionHead( | |
critic_head_hidden_size, 1, critic_head_layer_num, activation=activation, norm_type=norm_type | |
) | |
assert self.action_space in ['discrete', 'continuous'], self.action_space | |
if self.action_space == 'discrete': | |
self.actor_head = DiscreteHead( | |
actor_head_hidden_size, action_shape, actor_head_layer_num, activation=activation, norm_type=norm_type | |
) | |
elif self.action_space == 'continuous': | |
self.actor_head = ReparameterizationHead( | |
actor_head_hidden_size, | |
action_shape, | |
actor_head_layer_num, | |
sigma_type=sigma_type, | |
activation=activation, | |
norm_type=norm_type, | |
bound_type=bound_type | |
) | |
# must use list, not nn.ModuleList | |
self.actor = [self.actor_encoder, self.actor_rnn, self.actor_head] if self.use_lstm \ | |
else [self.actor_encoder, self.actor_head] | |
self.critic = [self.critic_encoder, self.critic_rnn, self.critic_head] if self.use_lstm \ | |
else [self.critic_encoder, self.critic_head] | |
# for convenience of call some apis(such as: self.critic.parameters()), but may cause | |
# misunderstanding when print(self) | |
self.actor = nn.ModuleList(self.actor) | |
self.critic = nn.ModuleList(self.critic) | |
def forward(self, inputs: Union[torch.Tensor, Dict], mode: str) -> Dict: | |
r""" | |
Overview: | |
Use encoded embedding tensor to predict output. | |
Parameter updates with VAC's MLPs forward setup. | |
Arguments: | |
Forward with ``'compute_actor'`` or ``'compute_critic'``: | |
- inputs (:obj:`torch.Tensor`): | |
The encoded embedding tensor, determined with given ``hidden_size``, i.e. ``(B, N=hidden_size)``. | |
Whether ``actor_head_hidden_size`` or ``critic_head_hidden_size`` depend on ``mode``. | |
Returns: | |
- outputs (:obj:`Dict`): | |
Run with encoder and head. | |
Forward with ``'compute_actor'``, Necessary Keys: | |
- logit (:obj:`torch.Tensor`): Logit encoding tensor, with same size as input ``x``. | |
Forward with ``'compute_critic'``, Necessary Keys: | |
- value (:obj:`torch.Tensor`): Q value tensor with same size as batch size. | |
Shapes: | |
- inputs (:obj:`torch.Tensor`): :math:`(B, N)`, where B is batch size and N corresponding ``hidden_size`` | |
- logit (:obj:`torch.FloatTensor`): :math:`(B, N)`, where B is batch size and N is ``action_shape`` | |
- value (:obj:`torch.FloatTensor`): :math:`(B, )`, where B is batch size. | |
Actor Examples: | |
>>> model = VAC(64,128) | |
>>> inputs = torch.randn(4, 64) | |
>>> actor_outputs = model(inputs,'compute_actor') | |
>>> assert actor_outputs['logit'].shape == torch.Size([4, 128]) | |
Critic Examples: | |
>>> model = VAC(64,64) | |
>>> inputs = torch.randn(4, 64) | |
>>> critic_outputs = model(inputs,'compute_critic') | |
>>> critic_outputs['value'] | |
tensor([0.0252, 0.0235, 0.0201, 0.0072], grad_fn=<SqueezeBackward1>) | |
Actor-Critic Examples: | |
>>> model = VAC(64,64) | |
>>> inputs = torch.randn(4, 64) | |
>>> outputs = model(inputs,'compute_actor_critic') | |
>>> outputs['value'] | |
tensor([0.0252, 0.0235, 0.0201, 0.0072], grad_fn=<SqueezeBackward1>) | |
>>> assert outputs['logit'].shape == torch.Size([4, 64]) | |
""" | |
assert mode in self.mode, "not support forward mode: {}/{}".format(mode, self.mode) | |
return getattr(self, mode)(inputs) | |
def compute_actor(self, inputs: Dict, inference: bool = False) -> Dict: | |
r""" | |
Overview: | |
Execute parameter updates with ``'compute_actor'`` mode | |
Use encoded embedding tensor to predict output. | |
Arguments: | |
- inputs (:obj:`torch.Tensor`): | |
input data dict with keys ['obs'(with keys ['agent_state', 'global_state', 'action_mask']), | |
'actor_prev_state'] | |
Returns: | |
- outputs (:obj:`Dict`): | |
Run with encoder RNN(optional) and head. | |
ReturnsKeys: | |
- logit (:obj:`torch.Tensor`): Logit encoding tensor. | |
- actor_next_state: | |
- hidden_state | |
Shapes: | |
- logit (:obj:`torch.FloatTensor`): :math:`(B, N)`, where B is batch size and N is ``action_shape`` | |
- actor_next_state: (B,) | |
- hidden_state: | |
Examples: | |
>>> model = HAVAC( | |
agent_obs_shape=obs_dim, | |
global_obs_shape=global_obs_dim, | |
action_shape=action_dim, | |
use_lstm = True, | |
) | |
>>> inputs = { | |
'obs': { | |
'agent_state': torch.randn(T, bs, obs_dim), | |
'global_state': torch.randn(T, bs, global_obs_dim), | |
'action_mask': torch.randint(0, 2, size=(T, bs, action_dim)) | |
}, | |
'actor_prev_state': [None for _ in range(bs)], | |
} | |
>>> actor_outputs = model(inputs,'compute_actor') | |
>>> assert actor_outputs['logit'].shape == (T, bs, action_dim) | |
""" | |
x = inputs['obs']['agent_state'] | |
output = {} | |
if self.use_lstm: | |
rnn_actor_prev_state = inputs['actor_prev_state'] | |
if inference: | |
x = self.actor_encoder(x) | |
rnn_output = self.actor_rnn(x, rnn_actor_prev_state, inference) | |
x = rnn_output['output'] | |
x = self.actor_head(x) | |
output['next_state'] = rnn_output['next_state'] | |
# output: 'logit'/'next_state' | |
else: | |
assert len(x.shape) in [3, 5], x.shape | |
x = parallel_wrapper(self.actor_encoder)(x) # (T, B, N) | |
rnn_output = self.actor_rnn(x, rnn_actor_prev_state, inference) | |
x = rnn_output['output'] | |
x = parallel_wrapper(self.actor_head)(x) | |
output['actor_next_state'] = rnn_output['next_state'] | |
output['actor_hidden_state'] = rnn_output['hidden_state'] | |
# output: 'logit'/'actor_next_state'/'hidden_state' | |
else: | |
x = self.actor_encoder(x) | |
x = self.actor_head(x) | |
# output: 'logit' | |
if self.action_space == 'discrete': | |
action_mask = inputs['obs']['action_mask'] | |
logit = x['logit'] | |
logit[action_mask == 0.0] = -99999999 | |
elif self.action_space == 'continuous': | |
logit = x | |
output['logit'] = logit | |
return output | |
def compute_critic(self, inputs: Dict, inference: bool = False) -> Dict: | |
r""" | |
Overview: | |
Execute parameter updates with ``'compute_critic'`` mode | |
Use encoded embedding tensor to predict output. | |
Arguments: | |
- inputs (:obj:`Dict`): | |
input data dict with keys ['obs'(with keys ['agent_state', 'global_state', 'action_mask']), | |
'critic_prev_state'(when you are using rnn)] | |
Returns: | |
- outputs (:obj:`Dict`): | |
Run with encoder [rnn] and head. | |
Necessary Keys: | |
- value (:obj:`torch.Tensor`): Q value tensor with same size as batch size. | |
- logits | |
Shapes: | |
- value (:obj:`torch.FloatTensor`): :math:`(B, )`, where B is batch size. | |
- logits | |
Examples: | |
>>> model = HAVAC( | |
agent_obs_shape=obs_dim, | |
global_obs_shape=global_obs_dim, | |
action_shape=action_dim, | |
use_lstm = True, | |
) | |
>>> inputs = { | |
'obs': { | |
'agent_state': torch.randn(T, bs, obs_dim), | |
'global_state': torch.randn(T, bs, global_obs_dim), | |
'action_mask': torch.randint(0, 2, size=(T, bs, action_dim)) | |
}, | |
'critic_prev_state': [None for _ in range(bs)], | |
} | |
>>> critic_outputs = model(inputs,'compute_critic') | |
>>> assert critic_outputs['value'].shape == (T, bs)) | |
""" | |
global_obs = inputs['obs']['global_state'] | |
output = {} | |
if self.use_lstm: | |
rnn_critic_prev_state = inputs['critic_prev_state'] | |
if inference: | |
x = self.critic_encoder(global_obs) | |
rnn_output = self.critic_rnn(x, rnn_critic_prev_state, inference) | |
x = rnn_output['output'] | |
x = self.critic_head(x) | |
output['next_state'] = rnn_output['next_state'] | |
# output: 'value'/'next_state' | |
else: | |
assert len(global_obs.shape) in [3, 5], global_obs.shape | |
x = parallel_wrapper(self.critic_encoder)(global_obs) # (T, B, N) | |
rnn_output = self.critic_rnn(x, rnn_critic_prev_state, inference) | |
x = rnn_output['output'] | |
x = parallel_wrapper(self.critic_head)(x) | |
output['critic_next_state'] = rnn_output['next_state'] | |
output['critic_hidden_state'] = rnn_output['hidden_state'] | |
# output: 'value'/'critic_next_state'/'hidden_state' | |
else: | |
x = self.critic_encoder(global_obs) | |
x = self.critic_head(x) | |
# output: 'value' | |
output['value'] = x['pred'] | |
return output | |
def compute_actor_critic(self, inputs: Dict, inference: bool = False) -> Dict: | |
r""" | |
Overview: | |
Execute parameter updates with ``'compute_actor_critic'`` mode | |
Use encoded embedding tensor to predict output. | |
Arguments: | |
- inputs (:dict): input data dict with keys | |
['obs'(with keys ['agent_state', 'global_state', 'action_mask']), | |
'actor_prev_state', 'critic_prev_state'(when you are using rnn)] | |
Returns: | |
- outputs (:obj:`Dict`): | |
Run with encoder and head. | |
ReturnsKeys: | |
- logit (:obj:`torch.Tensor`): Logit encoding tensor, with same size as input ``x``. | |
- value (:obj:`torch.Tensor`): Q value tensor with same size as batch size. | |
Shapes: | |
- logit (:obj:`torch.FloatTensor`): :math:`(B, N)`, where B is batch size and N is ``action_shape`` | |
- value (:obj:`torch.FloatTensor`): :math:`(B, )`, where B is batch size. | |
Examples: | |
>>> model = VAC(64,64) | |
>>> inputs = torch.randn(4, 64) | |
>>> outputs = model(inputs,'compute_actor_critic') | |
>>> outputs['value'] | |
tensor([0.0252, 0.0235, 0.0201, 0.0072], grad_fn=<SqueezeBackward1>) | |
>>> assert outputs['logit'].shape == torch.Size([4, 64]) | |
.. note:: | |
``compute_actor_critic`` interface aims to save computation when shares encoder. | |
Returning the combination dictionry. | |
""" | |
actor_output = self.compute_actor(inputs, inference) | |
critic_output = self.compute_critic(inputs, inference) | |
if self.use_lstm: | |
return { | |
'logit': actor_output['logit'], | |
'value': critic_output['value'], | |
'actor_next_state': actor_output['actor_next_state'], | |
'actor_hidden_state': actor_output['actor_hidden_state'], | |
'critic_next_state': critic_output['critic_next_state'], | |
'critic_hidden_state': critic_output['critic_hidden_state'], | |
} | |
else: | |
return { | |
'logit': actor_output['logit'], | |
'value': critic_output['value'], | |
} | |