Spaces:
Sleeping
Sleeping
from typing import Union, Optional, Dict, Callable, List | |
import torch | |
import torch.nn as nn | |
from ding.torch_utils import get_lstm, one_hot, to_tensor, to_ndarray | |
from ding.utils import MODEL_REGISTRY, SequenceType, squeeze | |
# from ding.torch_utils.data_helper import one_hot_embedding, one_hot_embedding_none | |
from ..common import FCEncoder, ConvEncoder, DiscreteHead, DuelingHead, MultiHead, RainbowHead, \ | |
QuantileHead, QRDQNHead, DistributionHead | |
def parallel_wrapper(forward_fn: Callable) -> Callable: | |
""" | |
Overview: | |
Process timestep T and batch_size B at the same time, in other words, treat different timestep data as \ | |
different trajectories in a batch. | |
Arguments: | |
- forward_fn (:obj:`Callable`): Normal ``nn.Module`` 's forward function. | |
Returns: | |
- wrapper (:obj:`Callable`): Wrapped function. | |
""" | |
def wrapper(x: torch.Tensor) -> Union[torch.Tensor, List[torch.Tensor]]: | |
T, B = x.shape[:2] | |
def reshape(d): | |
if isinstance(d, list): | |
d = [reshape(t) for t in d] | |
elif isinstance(d, dict): | |
d = {k: reshape(v) for k, v in d.items()} | |
else: | |
d = d.reshape(T, B, *d.shape[1:]) | |
return d | |
x = x.reshape(T * B, *x.shape[2:]) | |
x = forward_fn(x) | |
x = reshape(x) | |
return x | |
return wrapper | |
class NGU(nn.Module): | |
""" | |
Overview: | |
The recurrent Q model for NGU(https://arxiv.org/pdf/2002.06038.pdf) policy, modified from the class DRQN in \ | |
q_leaning.py. The implementation mentioned in the original paper is 'adapt the R2D2 agent that uses the \ | |
dueling network architecture with an LSTM layer after a convolutional neural network'. The NGU network \ | |
includes encoder, LSTM core(rnn) and head. | |
Interface: | |
``__init__``, ``forward``. | |
""" | |
def __init__( | |
self, | |
obs_shape: Union[int, SequenceType], | |
action_shape: Union[int, SequenceType], | |
encoder_hidden_size_list: SequenceType = [128, 128, 64], | |
collector_env_num: Optional[int] = 1, # TODO | |
dueling: bool = True, | |
head_hidden_size: Optional[int] = None, | |
head_layer_num: int = 1, | |
lstm_type: Optional[str] = 'normal', | |
activation: Optional[nn.Module] = nn.ReLU(), | |
norm_type: Optional[str] = None | |
) -> None: | |
""" | |
Overview: | |
Init the DRQN Model for NGU according to arguments. | |
Arguments: | |
- obs_shape (:obj:`Union[int, SequenceType]`): Observation's space, such as 8 or [4, 84, 84]. | |
- action_shape (:obj:`Union[int, SequenceType]`): Action's space, such as 6 or [2, 3, 3]. | |
- encoder_hidden_size_list (:obj:`SequenceType`): Collection of ``hidden_size`` to pass to ``Encoder``. | |
- collector_env_num (:obj:`Optional[int]`): The number of environments used to collect data simultaneously. | |
- dueling (:obj:`bool`): Whether choose ``DuelingHead`` (True) or ``DiscreteHead (False)``, \ | |
default to True. | |
- head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` to pass to ``Head``, should match the \ | |
last element of ``encoder_hidden_size_list``. | |
- head_layer_num (:obj:`int`): The number of layers in head network. | |
- lstm_type (:obj:`Optional[str]`): Version of rnn cell, now support ['normal', 'pytorch', 'hpc', 'gru'], \ | |
default is 'normal'. | |
- activation (:obj:`Optional[nn.Module]`): | |
The type of activation function to use in ``MLP`` the after ``layer_fn``, \ | |
if ``None`` then default set to ``nn.ReLU()``. | |
- norm_type (:obj:`Optional[str]`): | |
The type of normalization to use, see ``ding.torch_utils.fc_block`` for more details`. | |
""" | |
super(NGU, self).__init__() | |
# For compatibility: 1, (1, ), [4, H, H] | |
obs_shape, action_shape = squeeze(obs_shape), squeeze(action_shape) | |
self.action_shape = action_shape | |
self.collector_env_num = collector_env_num | |
if head_hidden_size is None: | |
head_hidden_size = encoder_hidden_size_list[-1] | |
# FC Encoder | |
if isinstance(obs_shape, int) or len(obs_shape) == 1: | |
self.encoder = FCEncoder(obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type) | |
# Conv Encoder | |
elif len(obs_shape) == 3: | |
self.encoder = ConvEncoder(obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type) | |
else: | |
raise RuntimeError( | |
"not support obs_shape for pre-defined encoder: {}, please customize your own DRQN".format(obs_shape) | |
) | |
# NOTE: current obs hidden_state_dim, previous action, previous extrinsic reward, beta | |
# TODO(pu): add prev_reward_intrinsic to network input, reward uses some kind of embedding instead of 1D value | |
input_size = head_hidden_size + action_shape + 1 + self.collector_env_num | |
# LSTM Type | |
self.rnn = get_lstm(lstm_type, input_size=input_size, hidden_size=head_hidden_size) | |
# Head Type | |
if dueling: | |
head_cls = DuelingHead | |
else: | |
head_cls = DiscreteHead | |
multi_head = not isinstance(action_shape, int) | |
if multi_head: | |
self.head = MultiHead( | |
head_cls, | |
head_hidden_size, | |
action_shape, | |
layer_num=head_layer_num, | |
activation=activation, | |
norm_type=norm_type | |
) | |
else: | |
self.head = head_cls( | |
head_hidden_size, action_shape, head_layer_num, activation=activation, norm_type=norm_type | |
) | |
def forward(self, inputs: Dict, inference: bool = False, saved_state_timesteps: Optional[list] = None) -> Dict: | |
""" | |
Overview: | |
Forward computation graph of NGU R2D2 network. Input observation, prev_action prev_reward_extrinsic \ | |
to predict NGU Q output. Parameter updates with NGU's MLPs forward setup. | |
Arguments: | |
- inputs (:obj:`Dict`): | |
- obs (:obj:`torch.Tensor`): Encoded observation. | |
- prev_state (:obj:`list`): Previous state's tensor of size ``(B, N)``. | |
- inference: (:obj:'bool'): If inference is True, we unroll the one timestep transition, \ | |
if inference is False, we unroll the sequence transitions. | |
- saved_state_timesteps: (:obj:'Optional[list]'): When inference is False, \ | |
we unroll the sequence transitions, then we would save rnn hidden states at timesteps \ | |
that are listed in list saved_state_timesteps. | |
Returns: | |
- outputs (:obj:`Dict`): | |
Run ``MLP`` with ``DRQN`` setups and return the result prediction dictionary. | |
ReturnsKeys: | |
- logit (:obj:`torch.Tensor`): Logit tensor with same size as input ``obs``. | |
- next_state (:obj:`list`): Next state's tensor of size ``(B, N)``. | |
Shapes: | |
- obs (:obj:`torch.Tensor`): :math:`(B, N=obs_space)`, where B is batch size. | |
- prev_state(:obj:`torch.FloatTensor list`): :math:`[(B, N)]`. | |
- logit (:obj:`torch.FloatTensor`): :math:`(B, N)`. | |
- next_state(:obj:`torch.FloatTensor list`): :math:`[(B, N)]`. | |
""" | |
x, prev_state = inputs['obs'], inputs['prev_state'] | |
if 'prev_action' in inputs.keys(): | |
# collect, eval mode: pass into one timestep mini-batch data (batchsize=env_num) | |
prev_action = inputs['prev_action'] | |
prev_reward_extrinsic = inputs['prev_reward_extrinsic'] | |
else: | |
# train mode: pass into H timesteps mini-batch data (batchsize=train_batch_size) | |
prev_action = torch.cat( | |
[torch.ones_like(inputs['action'][:, 0].unsqueeze(1)) * (-1), inputs['action'][:, :-1]], dim=1 | |
) # (B, 1) (B, H-1) -> (B, H, self.action_shape) | |
prev_reward_extrinsic = torch.cat( | |
[torch.zeros_like(inputs['reward'][:, 0].unsqueeze(1)), inputs['reward'][:, :-1]], dim=1 | |
) # (B, 1, nstep) (B, H-1, nstep) -> (B, H, nstep) | |
beta = inputs['beta'] # beta_index | |
if inference: | |
# collect, eval mode: pass into one timestep mini-batch data (batchsize=env_num) | |
x = self.encoder(x) | |
x = x.unsqueeze(0) | |
prev_reward_extrinsic = prev_reward_extrinsic.unsqueeze(0).unsqueeze(-1) | |
env_num = self.collector_env_num | |
beta_onehot = one_hot(beta, env_num).unsqueeze(0) | |
prev_action_onehot = one_hot(prev_action, self.action_shape).unsqueeze(0) | |
x_a_r_beta = torch.cat( | |
[x, prev_action_onehot, prev_reward_extrinsic, beta_onehot], dim=-1 | |
) # shape (1, H, 1+env_num+action_dim) | |
x, next_state = self.rnn(x_a_r_beta.to(torch.float32), prev_state) | |
# TODO(pu): x, next_state = self.rnn(x, prev_state) | |
x = x.squeeze(0) | |
x = self.head(x) | |
x['next_state'] = next_state | |
return x | |
else: | |
# train mode: pass into H timesteps mini-batch data (batchsize=train_batch_size) | |
assert len(x.shape) in [3, 5], x.shape # (B, H, obs_dim) | |
x = parallel_wrapper(self.encoder)(x) # (B, H, hidden_dim) | |
prev_reward_extrinsic = prev_reward_extrinsic[:, :, 0].unsqueeze(-1) # (B,H,1) | |
env_num = self.collector_env_num | |
beta_onehot = one_hot(beta.view(-1), env_num).view([beta.shape[0], beta.shape[1], -1]) # (B, H, env_num) | |
prev_action_onehot = one_hot(prev_action.view(-1), self.action_shape).view( | |
[prev_action.shape[0], prev_action.shape[1], -1] | |
) # (B, H, action_dim) | |
x_a_r_beta = torch.cat( | |
[x, prev_action_onehot, prev_reward_extrinsic, beta_onehot], dim=-1 | |
) # (B, H, 1+env_num+action_dim) | |
x = x_a_r_beta | |
lstm_embedding = [] | |
# TODO(nyz) how to deal with hidden_size key-value | |
hidden_state_list = [] | |
if saved_state_timesteps is not None: | |
saved_state = [] | |
for t in range(x.shape[0]): # T timesteps | |
output, prev_state = self.rnn(x[t:t + 1], prev_state) | |
if saved_state_timesteps is not None and t + 1 in saved_state_timesteps: | |
saved_state.append(prev_state) | |
lstm_embedding.append(output) | |
# only take the hidden state h | |
hidden_state_list.append(torch.cat([item['h'] for item in prev_state], dim=1)) | |
x = torch.cat(lstm_embedding, 0) # [B, H, 64] | |
x = parallel_wrapper(self.head)(x) | |
# the last timestep state including the hidden state (h) and the cell state (c) | |
x['next_state'] = prev_state | |
x['hidden_state'] = torch.cat(hidden_state_list, dim=-3) | |
if saved_state_timesteps is not None: | |
# the selected saved hidden states, including the hidden state (h) and the cell state (c) | |
x['saved_state'] = saved_state | |
return x | |