Spaces:
Sleeping
Sleeping
from typing import Union, Optional, Dict, Callable, List | |
import torch | |
import torch.nn as nn | |
from easydict import EasyDict | |
from ding.torch_utils import get_lstm | |
from ding.utils import MODEL_REGISTRY, SequenceType, squeeze | |
from ..common import FCEncoder, ConvEncoder, DiscreteHead, DuelingHead, \ | |
MultiHead, RegressionHead, ReparameterizationHead, independent_normal_dist | |
class PG(nn.Module): | |
""" | |
Overview: | |
The neural network and computation graph of algorithms related to Policy Gradient(PG) \ | |
(https://proceedings.neurips.cc/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf). \ | |
The PG model is composed of two parts: encoder and head. Encoders are used to extract the feature \ | |
from various observation. Heads are used to predict corresponding action logit. | |
Interface: | |
``__init__``, ``forward``. | |
""" | |
def __init__( | |
self, | |
obs_shape: Union[int, SequenceType], | |
action_shape: Union[int, SequenceType], | |
action_space: str = 'discrete', | |
encoder_hidden_size_list: SequenceType = [128, 128, 64], | |
head_hidden_size: Optional[int] = None, | |
head_layer_num: int = 1, | |
activation: Optional[nn.Module] = nn.ReLU(), | |
norm_type: Optional[str] = None | |
) -> None: | |
""" | |
Overview: | |
Initialize the PG model according to corresponding input arguments. | |
Arguments: | |
- obs_shape (:obj:`Union[int, SequenceType]`): Observation space shape, such as 8 or [4, 84, 84]. | |
- action_shape (:obj:`Union[int, SequenceType]`): Action space shape, such as 6 or [2, 3, 3]. | |
- action_space (:obj:`str`): The type of different action spaces, including ['discrete', 'continuous'], \ | |
then will instantiate corresponding head, including ``DiscreteHead`` and ``ReparameterizationHead``. | |
- encoder_hidden_size_list (:obj:`SequenceType`): Collection of ``hidden_size`` to pass to ``Encoder``, \ | |
the last element must match ``head_hidden_size``. | |
- head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` of ``head`` network, defaults \ | |
to None, it must match the last element of ``encoder_hidden_size_list``. | |
- head_layer_num (:obj:`int`): The num of layers used in the ``head`` network to compute action. | |
- activation (:obj:`Optional[nn.Module]`): The type of activation function in networks \ | |
if ``None`` then default set it to ``nn.ReLU()``. | |
- norm_type (:obj:`Optional[str]`): The type of normalization in networks, see \ | |
``ding.torch_utils.fc_block`` for more details. you can choose one of ['BN', 'IN', 'SyncBN', 'LN'] | |
Examples: | |
>>> model = PG((4, 84, 84), 5) | |
>>> inputs = torch.randn(8, 4, 84, 84) | |
>>> outputs = model(inputs) | |
>>> assert isinstance(outputs, dict) | |
>>> assert outputs['logit'].shape == (8, 5) | |
>>> assert outputs['dist'].sample().shape == (8, ) | |
""" | |
super(PG, self).__init__() | |
# For compatibility: 1, (1, ), [4, 32, 32] | |
obs_shape, action_shape = squeeze(obs_shape), squeeze(action_shape) | |
if head_hidden_size is None: | |
head_hidden_size = encoder_hidden_size_list[-1] | |
# FC Encoder | |
if isinstance(obs_shape, int) or len(obs_shape) == 1: | |
self.encoder = FCEncoder(obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type) | |
# Conv Encoder | |
elif len(obs_shape) == 3: | |
self.encoder = ConvEncoder(obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type) | |
else: | |
raise RuntimeError( | |
"not support obs_shape for pre-defined encoder: {}, please customize your own BC".format(obs_shape) | |
) | |
self.action_space = action_space | |
# Head | |
if self.action_space == 'discrete': | |
self.head = DiscreteHead( | |
head_hidden_size, action_shape, head_layer_num, activation=activation, norm_type=norm_type | |
) | |
elif self.action_space == 'continuous': | |
self.head = ReparameterizationHead( | |
head_hidden_size, | |
action_shape, | |
head_layer_num, | |
activation=activation, | |
norm_type=norm_type, | |
sigma_type='independent' | |
) | |
else: | |
raise KeyError("not support action space: {}".format(self.action_space)) | |
def forward(self, x: torch.Tensor) -> Dict: | |
""" | |
Overview: | |
PG forward computation graph, input observation tensor to predict policy distribution. | |
Arguments: | |
- x (:obj:`torch.Tensor`): The input observation tensor data. | |
Returns: | |
- outputs (:obj:`torch.distributions`): The output policy distribution. If action space is \ | |
discrete, the output is Categorical distribution; if action space is continuous, the output is Normal \ | |
distribution. | |
""" | |
x = self.encoder(x) | |
x = self.head(x) | |
if self.action_space == 'discrete': | |
x['dist'] = torch.distributions.Categorical(logits=x['logit']) | |
elif self.action_space == 'continuous': | |
x = {'logit': {'mu': x['mu'], 'sigma': x['sigma']}} | |
x['dist'] = independent_normal_dist(x['logit']) | |
return x | |