Spaces:
Sleeping
Sleeping
from typing import Union, Optional, Dict, Callable, List | |
import torch | |
import torch.nn as nn | |
from ding.torch_utils import get_lstm | |
from ding.utils import MODEL_REGISTRY, SequenceType, squeeze | |
from ..common import FCEncoder, ConvEncoder, DiscreteHead, DuelingHead, MultiHead, RainbowHead, \ | |
QuantileHead, FQFHead, QRDQNHead, DistributionHead, BranchingHead | |
from ding.torch_utils.network.gtrxl import GTrXL | |
class DQN(nn.Module): | |
""" | |
Overview: | |
The neural nework structure and computation graph of Deep Q Network (DQN) algorithm, which is the most classic \ | |
value-based RL algorithm for discrete action. The DQN is composed of two parts: ``encoder`` and ``head``. \ | |
The ``encoder`` is used to extract the feature from various observation, and the ``head`` is used to compute \ | |
the Q value of each action dimension. | |
Interfaces: | |
``__init__``, ``forward``. | |
.. note:: | |
Current ``DQN`` supports two types of encoder: ``FCEncoder`` and ``ConvEncoder``, two types of head: \ | |
``DiscreteHead`` and ``DuelingHead``. You can customize your own encoder or head by inheriting this class. | |
""" | |
def __init__( | |
self, | |
obs_shape: Union[int, SequenceType], | |
action_shape: Union[int, SequenceType], | |
encoder_hidden_size_list: SequenceType = [128, 128, 64], | |
dueling: bool = True, | |
head_hidden_size: Optional[int] = None, | |
head_layer_num: int = 1, | |
activation: Optional[nn.Module] = nn.ReLU(), | |
norm_type: Optional[str] = None, | |
dropout: Optional[float] = None | |
) -> None: | |
""" | |
Overview: | |
initialize the DQN (encoder + head) Model according to corresponding input arguments. | |
Arguments: | |
- obs_shape (:obj:`Union[int, SequenceType]`): Observation space shape, such as 8 or [4, 84, 84]. | |
- action_shape (:obj:`Union[int, SequenceType]`): Action space shape, such as 6 or [2, 3, 3]. | |
- encoder_hidden_size_list (:obj:`SequenceType`): Collection of ``hidden_size`` to pass to ``Encoder``, \ | |
the last element must match ``head_hidden_size``. | |
- dueling (:obj:`Optional[bool]`): Whether choose ``DuelingHead`` or ``DiscreteHead (default)``. | |
- head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` of head network, defaults to None, \ | |
then it will be set to the last element of ``encoder_hidden_size_list``. | |
- head_layer_num (:obj:`int`): The number of layers used in the head network to compute Q value output. | |
- activation (:obj:`Optional[nn.Module]`): The type of activation function in networks \ | |
if ``None`` then default set it to ``nn.ReLU()``. | |
- norm_type (:obj:`Optional[str]`): The type of normalization in networks, see \ | |
``ding.torch_utils.fc_block`` for more details. you can choose one of ['BN', 'IN', 'SyncBN', 'LN'] | |
- dropout (:obj:`Optional[float]`): The dropout rate of the dropout layer. \ | |
if ``None`` then default disable dropout layer. | |
""" | |
super(DQN, self).__init__() | |
# Squeeze data from tuple, list or dict to single object. For example, from (4, ) to 4 | |
obs_shape, action_shape = squeeze(obs_shape), squeeze(action_shape) | |
if head_hidden_size is None: | |
head_hidden_size = encoder_hidden_size_list[-1] | |
# FC Encoder | |
if isinstance(obs_shape, int) or len(obs_shape) == 1: | |
self.encoder = FCEncoder( | |
obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type, dropout=dropout | |
) | |
# Conv Encoder | |
elif len(obs_shape) == 3: | |
assert dropout is None, "dropout is not supported in ConvEncoder" | |
self.encoder = ConvEncoder(obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type) | |
else: | |
raise RuntimeError( | |
"not support obs_shape for pre-defined encoder: {}, please customize your own DQN".format(obs_shape) | |
) | |
# Head Type | |
if dueling: | |
head_cls = DuelingHead | |
else: | |
head_cls = DiscreteHead | |
multi_head = not isinstance(action_shape, int) | |
if multi_head: | |
self.head = MultiHead( | |
head_cls, | |
head_hidden_size, | |
action_shape, | |
layer_num=head_layer_num, | |
activation=activation, | |
norm_type=norm_type, | |
dropout=dropout | |
) | |
else: | |
self.head = head_cls( | |
head_hidden_size, | |
action_shape, | |
head_layer_num, | |
activation=activation, | |
norm_type=norm_type, | |
dropout=dropout | |
) | |
def forward(self, x: torch.Tensor) -> Dict: | |
""" | |
Overview: | |
DQN forward computation graph, input observation tensor to predict q_value. | |
Arguments: | |
- x (:obj:`torch.Tensor`): The input observation tensor data. | |
Returns: | |
- outputs (:obj:`Dict`): The output of DQN's forward, including q_value. | |
ReturnsKeys: | |
- logit (:obj:`torch.Tensor`): Discrete Q-value output of each possible action dimension. | |
Shapes: | |
- x (:obj:`torch.Tensor`): :math:`(B, N)`, where B is batch size and N is ``obs_shape`` | |
- logit (:obj:`torch.Tensor`): :math:`(B, M)`, where B is batch size and M is ``action_shape`` | |
Examples: | |
>>> model = DQN(32, 6) # arguments: 'obs_shape' and 'action_shape' | |
>>> inputs = torch.randn(4, 32) | |
>>> outputs = model(inputs) | |
>>> assert isinstance(outputs, dict) and outputs['logit'].shape == torch.Size([4, 6]) | |
.. note:: | |
For consistency and compatibility, we name all the outputs of the network which are related to action \ | |
selections as ``logit``. | |
""" | |
x = self.encoder(x) | |
x = self.head(x) | |
return x | |
class BDQ(nn.Module): | |
def __init__( | |
self, | |
obs_shape: Union[int, SequenceType], | |
num_branches: int = 0, | |
action_bins_per_branch: int = 2, | |
layer_num: int = 3, | |
a_layer_num: Optional[int] = None, | |
v_layer_num: Optional[int] = None, | |
encoder_hidden_size_list: SequenceType = [128, 128, 64], | |
head_hidden_size: Optional[int] = None, | |
norm_type: Optional[nn.Module] = None, | |
activation: Optional[nn.Module] = nn.ReLU(), | |
) -> None: | |
""" | |
Overview: | |
Init the BDQ (encoder + head) Model according to input arguments. \ | |
referenced paper Action Branching Architectures for Deep Reinforcement Learning \ | |
<https://arxiv.org/pdf/1711.08946> | |
Arguments: | |
- obs_shape (:obj:`Union[int, SequenceType]`): Observation space shape, such as 8 or [4, 84, 84]. | |
- num_branches (:obj:`int`): The number of branches, which is equivalent to the action dimension, \ | |
such as 6 in mujoco's halfcheetah environment. | |
- action_bins_per_branch (:obj:`int`): The number of actions in each dimension. | |
- layer_num (:obj:`int`): The number of layers used in the network to compute Advantage and Value output. | |
- a_layer_num (:obj:`int`): The number of layers used in the network to compute Advantage output. | |
- v_layer_num (:obj:`int`): The number of layers used in the network to compute Value output. | |
- encoder_hidden_size_list (:obj:`SequenceType`): Collection of ``hidden_size`` to pass to ``Encoder``, \ | |
the last element must match ``head_hidden_size``. | |
- head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` of head network. | |
- norm_type (:obj:`Optional[str]`): The type of normalization in networks, see \ | |
``ding.torch_utils.fc_block`` for more details. | |
- activation (:obj:`Optional[nn.Module]`): The type of activation function in networks \ | |
if ``None`` then default set it to ``nn.ReLU()`` | |
""" | |
super(BDQ, self).__init__() | |
# For compatibility: 1, (1, ), [4, 32, 32] | |
obs_shape, num_branches = squeeze(obs_shape), squeeze(num_branches) | |
if head_hidden_size is None: | |
head_hidden_size = encoder_hidden_size_list[-1] | |
# backbone | |
# FC Encoder | |
if isinstance(obs_shape, int) or len(obs_shape) == 1: | |
self.encoder = FCEncoder(obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type) | |
# Conv Encoder | |
elif len(obs_shape) == 3: | |
self.encoder = ConvEncoder(obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type) | |
else: | |
raise RuntimeError( | |
"not support obs_shape for pre-defined encoder: {}, please customize your own DQN".format(obs_shape) | |
) | |
self.num_branches = num_branches | |
self.action_bins_per_branch = action_bins_per_branch | |
# head | |
self.head = BranchingHead( | |
head_hidden_size, | |
num_branches=self.num_branches, | |
action_bins_per_branch=self.action_bins_per_branch, | |
layer_num=layer_num, | |
a_layer_num=a_layer_num, | |
v_layer_num=v_layer_num, | |
activation=activation, | |
norm_type=norm_type | |
) | |
def forward(self, x: torch.Tensor) -> Dict: | |
""" | |
Overview: | |
BDQ forward computation graph, input observation tensor to predict q_value. | |
Arguments: | |
- x (:obj:`torch.Tensor`): Observation inputs | |
Returns: | |
- outputs (:obj:`Dict`): BDQ forward outputs, such as q_value. | |
ReturnsKeys: | |
- logit (:obj:`torch.Tensor`): Discrete Q-value output of each action dimension. | |
Shapes: | |
- x (:obj:`torch.Tensor`): :math:`(B, N)`, where B is batch size and N is ``obs_shape`` | |
- logit (:obj:`torch.FloatTensor`): :math:`(B, M)`, where B is batch size and M is | |
``num_branches * action_bins_per_branch`` | |
Examples: | |
>>> model = BDQ(8, 5, 2) # arguments: 'obs_shape', 'num_branches' and 'action_bins_per_branch'. | |
>>> inputs = torch.randn(4, 8) | |
>>> outputs = model(inputs) | |
>>> assert isinstance(outputs, dict) and outputs['logit'].shape == torch.Size([4, 5, 2]) | |
""" | |
x = self.encoder(x) / (self.num_branches + 1) # corresponds to the "Gradient Rescaling" in the paper | |
x = self.head(x) | |
return x | |
class C51DQN(nn.Module): | |
""" | |
Overview: | |
The neural network structure and computation graph of C51DQN, which combines distributional RL and DQN. \ | |
You can refer to https://arxiv.org/pdf/1707.06887.pdf for more details. The C51DQN is composed of \ | |
``encoder`` and ``head``. ``encoder`` is used to extract the feature of observation, and ``head`` is \ | |
used to compute the distribution of Q-value. | |
Interfaces: | |
``__init__``, ``forward`` | |
.. note:: | |
Current C51DQN supports two types of encoder: ``FCEncoder`` and ``ConvEncoder``. | |
""" | |
def __init__( | |
self, | |
obs_shape: Union[int, SequenceType], | |
action_shape: Union[int, SequenceType], | |
encoder_hidden_size_list: SequenceType = [128, 128, 64], | |
head_hidden_size: int = None, | |
head_layer_num: int = 1, | |
activation: Optional[nn.Module] = nn.ReLU(), | |
norm_type: Optional[str] = None, | |
v_min: Optional[float] = -10, | |
v_max: Optional[float] = 10, | |
n_atom: Optional[int] = 51, | |
) -> None: | |
""" | |
Overview: | |
initialize the C51 Model according to corresponding input arguments. | |
Arguments: | |
- obs_shape (:obj:`Union[int, SequenceType]`): Observation space shape, such as 8 or [4, 84, 84]. | |
- action_shape (:obj:`Union[int, SequenceType]`): Action space shape, such as 6 or [2, 3, 3]. | |
- encoder_hidden_size_list (:obj:`SequenceType`): Collection of ``hidden_size`` to pass to ``Encoder``, \ | |
the last element must match ``head_hidden_size``. | |
- head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` of head network, defaults to None, \ | |
then it will be set to the last element of ``encoder_hidden_size_list``. | |
- head_layer_num (:obj:`int`): The number of layers used in the head network to compute Q value output. | |
- activation (:obj:`Optional[nn.Module]`): The type of activation function in networks \ | |
if ``None`` then default set it to ``nn.ReLU()``. | |
- norm_type (:obj:`Optional[str]`): The type of normalization in networks, see \ | |
``ding.torch_utils.fc_block`` for more details. you can choose one of ['BN', 'IN', 'SyncBN', 'LN'] | |
- v_min (:obj:`Optional[float]`): The minimum value of the support of the distribution, which is related \ | |
to the value (discounted sum of reward) scale of the specific environment. Defaults to -10. | |
- v_max (:obj:`Optional[float]`): The maximum value of the support of the distribution, which is related \ | |
to the value (discounted sum of reward) scale of the specific environment. Defaults to 10. | |
- n_atom (:obj:`Optional[int]`): The number of atoms in the prediction distribution, 51 is the default \ | |
value in the paper, you can also try other values such as 301. | |
""" | |
super(C51DQN, self).__init__() | |
# For compatibility: 1, (1, ), [4, 32, 32] | |
obs_shape, action_shape = squeeze(obs_shape), squeeze(action_shape) | |
if head_hidden_size is None: | |
head_hidden_size = encoder_hidden_size_list[-1] | |
# FC Encoder | |
if isinstance(obs_shape, int) or len(obs_shape) == 1: | |
self.encoder = FCEncoder(obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type) | |
# Conv Encoder | |
elif len(obs_shape) == 3: | |
self.encoder = ConvEncoder(obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type) | |
else: | |
raise RuntimeError( | |
"not support obs_shape for pre-defined encoder: {}, please customize your own C51DQN".format(obs_shape) | |
) | |
# Head Type | |
multi_head = not isinstance(action_shape, int) | |
if multi_head: | |
self.head = MultiHead( | |
DistributionHead, | |
head_hidden_size, | |
action_shape, | |
layer_num=head_layer_num, | |
activation=activation, | |
norm_type=norm_type, | |
n_atom=n_atom, | |
v_min=v_min, | |
v_max=v_max, | |
) | |
else: | |
self.head = DistributionHead( | |
head_hidden_size, | |
action_shape, | |
head_layer_num, | |
activation=activation, | |
norm_type=norm_type, | |
n_atom=n_atom, | |
v_min=v_min, | |
v_max=v_max, | |
) | |
def forward(self, x: torch.Tensor) -> Dict: | |
""" | |
Overview: | |
C51DQN forward computation graph, input observation tensor to predict q_value and its distribution. | |
Arguments: | |
- x (:obj:`torch.Tensor`): The input observation tensor data. | |
Returns: | |
- outputs (:obj:`Dict`): The output of DQN's forward, including q_value, and distribution. | |
ReturnsKeys: | |
- logit (:obj:`torch.Tensor`): Discrete Q-value output of each possible action dimension. | |
- distribution (:obj:`torch.Tensor`): Q-Value discretized distribution, i.e., probability of each \ | |
uniformly spaced atom Q-value, such as dividing [-10, 10] into 51 uniform spaces. | |
Shapes: | |
- x (:obj:`torch.Tensor`): :math:`(B, N)`, where B is batch size and N is head_hidden_size. | |
- logit (:obj:`torch.Tensor`): :math:`(B, M)`, where M is action_shape. | |
- distribution(:obj:`torch.Tensor`): :math:`(B, M, P)`, where P is n_atom. | |
Examples: | |
>>> model = C51DQN(128, 64) # arguments: 'obs_shape' and 'action_shape' | |
>>> inputs = torch.randn(4, 128) | |
>>> outputs = model(inputs) | |
>>> assert isinstance(outputs, dict) | |
>>> # default head_hidden_size: int = 64, | |
>>> assert outputs['logit'].shape == torch.Size([4, 64]) | |
>>> # default n_atom: int = 51 | |
>>> assert outputs['distribution'].shape == torch.Size([4, 64, 51]) | |
.. note:: | |
For consistency and compatibility, we name all the outputs of the network which are related to action \ | |
selections as ``logit``. | |
.. note:: | |
For convenience, we recommend that the number of atoms should be odd, so that the middle atom is exactly \ | |
the value of the Q-value. | |
""" | |
x = self.encoder(x) | |
x = self.head(x) | |
return x | |
class QRDQN(nn.Module): | |
""" | |
Overview: | |
The neural network structure and computation graph of QRDQN, which combines distributional RL and DQN. \ | |
You can refer to Distributional Reinforcement Learning with Quantile Regression \ | |
https://arxiv.org/pdf/1710.10044.pdf for more details. | |
Interfaces: | |
``__init__``, ``forward`` | |
""" | |
def __init__( | |
self, | |
obs_shape: Union[int, SequenceType], | |
action_shape: Union[int, SequenceType], | |
encoder_hidden_size_list: SequenceType = [128, 128, 64], | |
head_hidden_size: Optional[int] = None, | |
head_layer_num: int = 1, | |
num_quantiles: int = 32, | |
activation: Optional[nn.Module] = nn.ReLU(), | |
norm_type: Optional[str] = None, | |
) -> None: | |
""" | |
Overview: | |
Initialize the QRDQN Model according to input arguments. | |
Arguments: | |
- obs_shape (:obj:`Union[int, SequenceType]`): Observation's space. | |
- action_shape (:obj:`Union[int, SequenceType]`): Action's space. | |
- encoder_hidden_size_list (:obj:`SequenceType`): Collection of ``hidden_size`` to pass to ``Encoder`` | |
- head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` to pass to ``Head``. | |
- head_layer_num (:obj:`int`): The num of layers used in the network to compute Q value output | |
- num_quantiles (:obj:`int`): Number of quantiles in the prediction distribution. | |
- activation (:obj:`Optional[nn.Module]`): | |
The type of activation function to use in ``MLP`` the after ``layer_fn``, | |
if ``None`` then default set to ``nn.ReLU()`` | |
- norm_type (:obj:`Optional[str]`): | |
The type of normalization to use, see ``ding.torch_utils.fc_block`` for more details` | |
""" | |
super(QRDQN, self).__init__() | |
# For compatibility: 1, (1, ), [4, 32, 32] | |
obs_shape, action_shape = squeeze(obs_shape), squeeze(action_shape) | |
if head_hidden_size is None: | |
head_hidden_size = encoder_hidden_size_list[-1] | |
# FC Encoder | |
if isinstance(obs_shape, int) or len(obs_shape) == 1: | |
self.encoder = FCEncoder(obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type) | |
# Conv Encoder | |
elif len(obs_shape) == 3: | |
self.encoder = ConvEncoder(obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type) | |
else: | |
raise RuntimeError( | |
"not support obs_shape for pre-defined encoder: {}, please customize your own QRDQN".format(obs_shape) | |
) | |
# Head Type | |
multi_head = not isinstance(action_shape, int) | |
if multi_head: | |
self.head = MultiHead( | |
QRDQNHead, | |
head_hidden_size, | |
action_shape, | |
layer_num=head_layer_num, | |
num_quantiles=num_quantiles, | |
activation=activation, | |
norm_type=norm_type, | |
) | |
else: | |
self.head = QRDQNHead( | |
head_hidden_size, | |
action_shape, | |
head_layer_num, | |
num_quantiles=num_quantiles, | |
activation=activation, | |
norm_type=norm_type, | |
) | |
def forward(self, x: torch.Tensor) -> Dict: | |
""" | |
Overview: | |
Use observation tensor to predict QRDQN's output. | |
Parameter updates with QRDQN's MLPs forward setup. | |
Arguments: | |
- x (:obj:`torch.Tensor`): | |
The encoded embedding tensor with ``(B, N=hidden_size)``. | |
Returns: | |
- outputs (:obj:`Dict`): | |
Run with encoder and head. Return the result prediction dictionary. | |
ReturnsKeys: | |
- logit (:obj:`torch.Tensor`): Logit tensor with same size as input ``x``. | |
- q (:obj:`torch.Tensor`): Q valye tensor tensor of size ``(B, N, num_quantiles)`` | |
- tau (:obj:`torch.Tensor`): tau tensor of size ``(B, N, 1)`` | |
Shapes: | |
- x (:obj:`torch.Tensor`): :math:`(B, N)`, where B is batch size and N is head_hidden_size. | |
- logit (:obj:`torch.FloatTensor`): :math:`(B, M)`, where M is action_shape. | |
- tau (:obj:`torch.Tensor`): :math:`(B, M, 1)` | |
Examples: | |
>>> model = QRDQN(64, 64) | |
>>> inputs = torch.randn(4, 64) | |
>>> outputs = model(inputs) | |
>>> assert isinstance(outputs, dict) | |
>>> assert outputs['logit'].shape == torch.Size([4, 64]) | |
>>> # default num_quantiles : int = 32 | |
>>> assert outputs['q'].shape == torch.Size([4, 64, 32]) | |
>>> assert outputs['tau'].shape == torch.Size([4, 32, 1]) | |
""" | |
x = self.encoder(x) | |
x = self.head(x) | |
return x | |
class IQN(nn.Module): | |
""" | |
Overview: | |
The neural network structure and computation graph of IQN, which combines distributional RL and DQN. \ | |
You can refer to paper Implicit Quantile Networks for Distributional Reinforcement Learning \ | |
https://arxiv.org/pdf/1806.06923.pdf for more details. | |
Interfaces: | |
``__init__``, ``forward`` | |
""" | |
def __init__( | |
self, | |
obs_shape: Union[int, SequenceType], | |
action_shape: Union[int, SequenceType], | |
encoder_hidden_size_list: SequenceType = [128, 128, 64], | |
head_hidden_size: Optional[int] = None, | |
head_layer_num: int = 1, | |
num_quantiles: int = 32, | |
quantile_embedding_size: int = 128, | |
activation: Optional[nn.Module] = nn.ReLU(), | |
norm_type: Optional[str] = None | |
) -> None: | |
""" | |
Overview: | |
Initialize the IQN Model according to input arguments. | |
Arguments: | |
- obs_shape (:obj:`Union[int, SequenceType]`): Observation space shape. | |
- action_shape (:obj:`Union[int, SequenceType]`): Action space shape. | |
- encoder_hidden_size_list (:obj:`SequenceType`): Collection of ``hidden_size`` to pass to ``Encoder`` | |
- head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` to pass to ``Head``. | |
- head_layer_num (:obj:`int`): The num of layers used in the network to compute Q value output | |
- num_quantiles (:obj:`int`): Number of quantiles in the prediction distribution. | |
- activation (:obj:`Optional[nn.Module]`): | |
The type of activation function to use in ``MLP`` the after ``layer_fn``, | |
if ``None`` then default set to ``nn.ReLU()`` | |
- norm_type (:obj:`Optional[str]`): | |
The type of normalization to use, see ``ding.torch_utils.fc_block`` for more details. | |
""" | |
super(IQN, self).__init__() | |
# For compatibility: 1, (1, ), [4, 32, 32] | |
obs_shape, action_shape = squeeze(obs_shape), squeeze(action_shape) | |
if head_hidden_size is None: | |
head_hidden_size = encoder_hidden_size_list[-1] | |
# FC Encoder | |
if isinstance(obs_shape, int) or len(obs_shape) == 1: | |
self.encoder = FCEncoder(obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type) | |
# Conv Encoder | |
elif len(obs_shape) == 3: | |
self.encoder = ConvEncoder(obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type) | |
else: | |
raise RuntimeError( | |
"not support obs_shape for pre-defined encoder: {}, please customize your own IQN".format(obs_shape) | |
) | |
# Head Type | |
head_cls = QuantileHead | |
multi_head = not isinstance(action_shape, int) | |
if multi_head: | |
self.head = MultiHead( | |
head_cls, | |
head_hidden_size, | |
action_shape, | |
layer_num=head_layer_num, | |
num_quantiles=num_quantiles, | |
quantile_embedding_size=quantile_embedding_size, | |
activation=activation, | |
norm_type=norm_type | |
) | |
else: | |
self.head = head_cls( | |
head_hidden_size, | |
action_shape, | |
head_layer_num, | |
activation=activation, | |
norm_type=norm_type, | |
num_quantiles=num_quantiles, | |
quantile_embedding_size=quantile_embedding_size, | |
) | |
def forward(self, x: torch.Tensor) -> Dict: | |
""" | |
Overview: | |
Use encoded embedding tensor to predict IQN's output. | |
Parameter updates with IQN's MLPs forward setup. | |
Arguments: | |
- x (:obj:`torch.Tensor`): | |
The encoded embedding tensor with ``(B, N=hidden_size)``. | |
Returns: | |
- outputs (:obj:`Dict`): | |
Run with encoder and head. Return the result prediction dictionary. | |
ReturnsKeys: | |
- logit (:obj:`torch.Tensor`): Logit tensor with same size as input ``x``. | |
- q (:obj:`torch.Tensor`): Q valye tensor tensor of size ``(num_quantiles, N, B)`` | |
- quantiles (:obj:`torch.Tensor`): quantiles tensor of size ``(quantile_embedding_size, 1)`` | |
Shapes: | |
- x (:obj:`torch.Tensor`): :math:`(B, N)`, where B is batch size and N is head_hidden_size. | |
- logit (:obj:`torch.FloatTensor`): :math:`(B, M)`, where M is action_shape | |
- quantiles (:obj:`torch.Tensor`): :math:`(P, 1)`, where P is quantile_embedding_size. | |
Examples: | |
>>> model = IQN(64, 64) # arguments: 'obs_shape' and 'action_shape' | |
>>> inputs = torch.randn(4, 64) | |
>>> outputs = model(inputs) | |
>>> assert isinstance(outputs, dict) | |
>>> assert outputs['logit'].shape == torch.Size([4, 64]) | |
>>> # default num_quantiles: int = 32 | |
>>> assert outputs['q'].shape == torch.Size([32, 4, 64] | |
>>> # default quantile_embedding_size: int = 128 | |
>>> assert outputs['quantiles'].shape == torch.Size([128, 1]) | |
""" | |
x = self.encoder(x) | |
x = self.head(x) | |
return x | |
class FQF(nn.Module): | |
""" | |
Overview: | |
The neural network structure and computation graph of FQF, which combines distributional RL and DQN. \ | |
You can refer to paper Fully Parameterized Quantile Function for Distributional Reinforcement Learning \ | |
https://arxiv.org/pdf/1911.02140.pdf for more details. | |
Interface: | |
``__init__``, ``forward`` | |
""" | |
def __init__( | |
self, | |
obs_shape: Union[int, SequenceType], | |
action_shape: Union[int, SequenceType], | |
encoder_hidden_size_list: SequenceType = [128, 128, 64], | |
head_hidden_size: Optional[int] = None, | |
head_layer_num: int = 1, | |
num_quantiles: int = 32, | |
quantile_embedding_size: int = 128, | |
activation: Optional[nn.Module] = nn.ReLU(), | |
norm_type: Optional[str] = None | |
) -> None: | |
""" | |
Overview: | |
Initialize the FQF Model according to input arguments. | |
Arguments: | |
- obs_shape (:obj:`Union[int, SequenceType]`): Observation space shape. | |
- action_shape (:obj:`Union[int, SequenceType]`): Action space shape. | |
- encoder_hidden_size_list (:obj:`SequenceType`): Collection of ``hidden_size`` to pass to ``Encoder`` | |
- head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` to pass to ``Head``. | |
- head_layer_num (:obj:`int`): The num of layers used in the network to compute Q value output | |
- num_quantiles (:obj:`int`): Number of quantiles in the prediction distribution. | |
- activation (:obj:`Optional[nn.Module]`): | |
The type of activation function to use in ``MLP`` the after ``layer_fn``, | |
if ``None`` then default set to ``nn.ReLU()`` | |
- norm_type (:obj:`Optional[str]`): | |
The type of normalization to use, see ``ding.torch_utils.fc_block`` for more details. | |
""" | |
super(FQF, self).__init__() | |
# For compatibility: 1, (1, ), [4, 32, 32] | |
obs_shape, action_shape = squeeze(obs_shape), squeeze(action_shape) | |
if head_hidden_size is None: | |
head_hidden_size = encoder_hidden_size_list[-1] | |
# FC Encoder | |
if isinstance(obs_shape, int) or len(obs_shape) == 1: | |
self.encoder = FCEncoder(obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type) | |
# Conv Encoder | |
elif len(obs_shape) == 3: | |
self.encoder = ConvEncoder(obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type) | |
else: | |
raise RuntimeError( | |
"not support obs_shape for pre-defined encoder: {}, please customize your own FQF".format(obs_shape) | |
) | |
# Head Type | |
head_cls = FQFHead | |
multi_head = not isinstance(action_shape, int) | |
if multi_head: | |
self.head = MultiHead( | |
head_cls, | |
head_hidden_size, | |
action_shape, | |
layer_num=head_layer_num, | |
num_quantiles=num_quantiles, | |
quantile_embedding_size=quantile_embedding_size, | |
activation=activation, | |
norm_type=norm_type | |
) | |
else: | |
self.head = head_cls( | |
head_hidden_size, | |
action_shape, | |
head_layer_num, | |
activation=activation, | |
norm_type=norm_type, | |
num_quantiles=num_quantiles, | |
quantile_embedding_size=quantile_embedding_size, | |
) | |
def forward(self, x: torch.Tensor) -> Dict: | |
""" | |
Overview: | |
Use encoded embedding tensor to predict FQF's output. | |
Parameter updates with FQF's MLPs forward setup. | |
Arguments: | |
- x (:obj:`torch.Tensor`): | |
The encoded embedding tensor with ``(B, N=hidden_size)``. | |
Returns: | |
- outputs (:obj:`Dict`): Dict containing keywords ``logit`` (:obj:`torch.Tensor`), \ | |
``q`` (:obj:`torch.Tensor`), ``quantiles`` (:obj:`torch.Tensor`), \ | |
``quantiles_hats`` (:obj:`torch.Tensor`), \ | |
``q_tau_i`` (:obj:`torch.Tensor`), ``entropies`` (:obj:`torch.Tensor`). | |
Shapes: | |
- x: :math:`(B, N)`, where B is batch size and N is head_hidden_size. | |
- logit: :math:`(B, M)`, where M is action_shape. | |
- q: :math:`(B, num_quantiles, M)`. | |
- quantiles: :math:`(B, num_quantiles + 1)`. | |
- quantiles_hats: :math:`(B, num_quantiles)`. | |
- q_tau_i: :math:`(B, num_quantiles - 1, M)`. | |
- entropies: :math:`(B, 1)`. | |
Examples: | |
>>> model = FQF(64, 64) # arguments: 'obs_shape' and 'action_shape' | |
>>> inputs = torch.randn(4, 64) | |
>>> outputs = model(inputs) | |
>>> assert isinstance(outputs, dict) | |
>>> assert outputs['logit'].shape == torch.Size([4, 64]) | |
>>> # default num_quantiles: int = 32 | |
>>> assert outputs['q'].shape == torch.Size([4, 32, 64]) | |
>>> assert outputs['quantiles'].shape == torch.Size([4, 33]) | |
>>> assert outputs['quantiles_hats'].shape == torch.Size([4, 32]) | |
>>> assert outputs['q_tau_i'].shape == torch.Size([4, 31, 64]) | |
>>> assert outputs['quantiles'].shape == torch.Size([4, 1]) | |
""" | |
x = self.encoder(x) | |
x = self.head(x) | |
return x | |
class RainbowDQN(nn.Module): | |
""" | |
Overview: | |
The neural network structure and computation graph of RainbowDQN, which combines distributional RL and DQN. \ | |
You can refer to paper Rainbow: Combining Improvements in Deep Reinforcement Learning \ | |
https://arxiv.org/pdf/1710.02298.pdf for more details. | |
Interfaces: | |
``__init__``, ``forward`` | |
.. note:: | |
RainbowDQN contains dueling architecture by default. | |
""" | |
def __init__( | |
self, | |
obs_shape: Union[int, SequenceType], | |
action_shape: Union[int, SequenceType], | |
encoder_hidden_size_list: SequenceType = [128, 128, 64], | |
head_hidden_size: Optional[int] = None, | |
head_layer_num: int = 1, | |
activation: Optional[nn.Module] = nn.ReLU(), | |
norm_type: Optional[str] = None, | |
v_min: Optional[float] = -10, | |
v_max: Optional[float] = 10, | |
n_atom: Optional[int] = 51, | |
) -> None: | |
""" | |
Overview: | |
Init the Rainbow Model according to arguments. | |
Arguments: | |
- obs_shape (:obj:`Union[int, SequenceType]`): Observation space shape. | |
- action_shape (:obj:`Union[int, SequenceType]`): Action space shape. | |
- encoder_hidden_size_list (:obj:`SequenceType`): Collection of ``hidden_size`` to pass to ``Encoder`` | |
- head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` to pass to ``Head``. | |
- head_layer_num (:obj:`int`): The num of layers used in the network to compute Q value output | |
- activation (:obj:`Optional[nn.Module]`): The type of activation function to use in ``MLP`` the after \ | |
``layer_fn``, if ``None`` then default set to ``nn.ReLU()`` | |
- norm_type (:obj:`Optional[str]`): The type of normalization to use, see ``ding.torch_utils.fc_block`` \ | |
for more details` | |
- n_atom (:obj:`Optional[int]`): Number of atoms in the prediction distribution. | |
""" | |
super(RainbowDQN, self).__init__() | |
# For compatibility: 1, (1, ), [4, 32, 32] | |
obs_shape, action_shape = squeeze(obs_shape), squeeze(action_shape) | |
if head_hidden_size is None: | |
head_hidden_size = encoder_hidden_size_list[-1] | |
# FC Encoder | |
if isinstance(obs_shape, int) or len(obs_shape) == 1: | |
self.encoder = FCEncoder(obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type) | |
# Conv Encoder | |
elif len(obs_shape) == 3: | |
self.encoder = ConvEncoder(obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type) | |
else: | |
raise RuntimeError( | |
"not support obs_shape for pre-defined encoder: {}, please customize your own RainbowDQN". | |
format(obs_shape) | |
) | |
# Head Type | |
multi_head = not isinstance(action_shape, int) | |
if multi_head: | |
self.head = MultiHead( | |
RainbowHead, | |
head_hidden_size, | |
action_shape, | |
layer_num=head_layer_num, | |
activation=activation, | |
norm_type=norm_type, | |
n_atom=n_atom, | |
v_min=v_min, | |
v_max=v_max, | |
) | |
else: | |
self.head = RainbowHead( | |
head_hidden_size, | |
action_shape, | |
head_layer_num, | |
activation=activation, | |
norm_type=norm_type, | |
n_atom=n_atom, | |
v_min=v_min, | |
v_max=v_max, | |
) | |
def forward(self, x: torch.Tensor) -> Dict: | |
""" | |
Overview: | |
Use observation tensor to predict Rainbow output. | |
Parameter updates with Rainbow's MLPs forward setup. | |
Arguments: | |
- x (:obj:`torch.Tensor`): | |
The encoded embedding tensor with ``(B, N=hidden_size)``. | |
Returns: | |
- outputs (:obj:`Dict`): | |
Run ``MLP`` with ``RainbowHead`` setups and return the result prediction dictionary. | |
ReturnsKeys: | |
- logit (:obj:`torch.Tensor`): Logit tensor with same size as input ``x``. | |
- distribution (:obj:`torch.Tensor`): Distribution tensor of size ``(B, N, n_atom)`` | |
Shapes: | |
- x (:obj:`torch.Tensor`): :math:`(B, N)`, where B is batch size and N is head_hidden_size. | |
- logit (:obj:`torch.FloatTensor`): :math:`(B, M)`, where M is action_shape. | |
- distribution(:obj:`torch.FloatTensor`): :math:`(B, M, P)`, where P is n_atom. | |
Examples: | |
>>> model = RainbowDQN(64, 64) # arguments: 'obs_shape' and 'action_shape' | |
>>> inputs = torch.randn(4, 64) | |
>>> outputs = model(inputs) | |
>>> assert isinstance(outputs, dict) | |
>>> assert outputs['logit'].shape == torch.Size([4, 64]) | |
>>> # default n_atom: int =51 | |
>>> assert outputs['distribution'].shape == torch.Size([4, 64, 51]) | |
""" | |
x = self.encoder(x) | |
x = self.head(x) | |
return x | |
def parallel_wrapper(forward_fn: Callable) -> Callable: | |
""" | |
Overview: | |
Process timestep T and batch_size B at the same time, in other words, treat different timestep data as | |
different trajectories in a batch. | |
Arguments: | |
- forward_fn (:obj:`Callable`): Normal ``nn.Module`` 's forward function. | |
Returns: | |
- wrapper (:obj:`Callable`): Wrapped function. | |
""" | |
def wrapper(x: torch.Tensor) -> Union[torch.Tensor, List[torch.Tensor]]: | |
T, B = x.shape[:2] | |
def reshape(d): | |
if isinstance(d, list): | |
d = [reshape(t) for t in d] | |
elif isinstance(d, dict): | |
d = {k: reshape(v) for k, v in d.items()} | |
else: | |
d = d.reshape(T, B, *d.shape[1:]) | |
return d | |
# NOTE(rjy): the initial input shape will be (T, B, N), | |
# means encoder or head should process B trajectorys, each trajectory has T timestep, | |
# but T and B dimension can be both treated as batch_size in encoder and head, | |
# i.e., independent and parallel processing, | |
# so here we need such fn to reshape for encoder or head | |
x = x.reshape(T * B, *x.shape[2:]) | |
x = forward_fn(x) | |
x = reshape(x) | |
return x | |
return wrapper | |
class DRQN(nn.Module): | |
""" | |
Overview: | |
The neural network structure and computation graph of DRQN (DQN + RNN = DRQN) algorithm, which is the most \ | |
common DQN variant for sequential data and paratially observable environment. The DRQN is composed of three \ | |
parts: ``encoder``, ``head`` and ``rnn``. The ``encoder`` is used to extract the feature from various \ | |
observation, the ``rnn`` is used to process the sequential observation and other data, and the ``head`` is \ | |
used to compute the Q value of each action dimension. | |
Interfaces: | |
``__init__``, ``forward``. | |
.. note:: | |
Current ``DRQN`` supports two types of encoder: ``FCEncoder`` and ``ConvEncoder``, two types of head: \ | |
``DiscreteHead`` and ``DuelingHead``, three types of rnn: ``normal (LSTM with LayerNorm)``, ``pytorch`` and \ | |
``gru``. You can customize your own encoder, rnn or head by inheriting this class. | |
""" | |
def __init__( | |
self, | |
obs_shape: Union[int, SequenceType], | |
action_shape: Union[int, SequenceType], | |
encoder_hidden_size_list: SequenceType = [128, 128, 64], | |
dueling: bool = True, | |
head_hidden_size: Optional[int] = None, | |
head_layer_num: int = 1, | |
lstm_type: Optional[str] = 'normal', | |
activation: Optional[nn.Module] = nn.ReLU(), | |
norm_type: Optional[str] = None, | |
res_link: bool = False | |
) -> None: | |
""" | |
Overview: | |
Initialize the DRQN Model according to the corresponding input arguments. | |
Arguments: | |
- obs_shape (:obj:`Union[int, SequenceType]`): Observation space shape, such as 8 or [4, 84, 84]. | |
- action_shape (:obj:`Union[int, SequenceType]`): Action space shape, such as 6 or [2, 3, 3]. | |
- encoder_hidden_size_list (:obj:`SequenceType`): Collection of ``hidden_size`` to pass to ``Encoder``, \ | |
the last element must match ``head_hidden_size``. | |
- dueling (:obj:`Optional[bool]`): Whether choose ``DuelingHead`` or ``DiscreteHead (default)``. | |
- head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` of head network, defaults to None, \ | |
then it will be set to the last element of ``encoder_hidden_size_list``. | |
- head_layer_num (:obj:`int`): The number of layers used in the head network to compute Q value output. | |
- lstm_type (:obj:`Optional[str]`): The type of RNN module, now support ['normal', 'pytorch', 'gru']. | |
- activation (:obj:`Optional[nn.Module]`): The type of activation function in networks \ | |
if ``None`` then default set it to ``nn.ReLU()``. | |
- norm_type (:obj:`Optional[str]`): The type of normalization in networks, see \ | |
``ding.torch_utils.fc_block`` for more details. you can choose one of ['BN', 'IN', 'SyncBN', 'LN'] | |
- res_link (:obj:`bool`): Whether to enable the residual link, which is the skip connnection between \ | |
single frame data and the sequential data, defaults to False. | |
""" | |
super(DRQN, self).__init__() | |
# For compatibility: 1, (1, ), [4, 32, 32] | |
obs_shape, action_shape = squeeze(obs_shape), squeeze(action_shape) | |
if head_hidden_size is None: | |
head_hidden_size = encoder_hidden_size_list[-1] | |
# FC Encoder | |
if isinstance(obs_shape, int) or len(obs_shape) == 1: | |
self.encoder = FCEncoder(obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type) | |
# Conv Encoder | |
elif len(obs_shape) == 3: | |
self.encoder = ConvEncoder(obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type) | |
else: | |
raise RuntimeError( | |
"not support obs_shape for pre-defined encoder: {}, please customize your own DRQN".format(obs_shape) | |
) | |
# LSTM Type | |
self.rnn = get_lstm(lstm_type, input_size=head_hidden_size, hidden_size=head_hidden_size) | |
self.res_link = res_link | |
# Head Type | |
if dueling: | |
head_cls = DuelingHead | |
else: | |
head_cls = DiscreteHead | |
multi_head = not isinstance(action_shape, int) | |
if multi_head: | |
self.head = MultiHead( | |
head_cls, | |
head_hidden_size, | |
action_shape, | |
layer_num=head_layer_num, | |
activation=activation, | |
norm_type=norm_type | |
) | |
else: | |
self.head = head_cls( | |
head_hidden_size, action_shape, head_layer_num, activation=activation, norm_type=norm_type | |
) | |
def forward(self, inputs: Dict, inference: bool = False, saved_state_timesteps: Optional[list] = None) -> Dict: | |
""" | |
Overview: | |
DRQN forward computation graph, input observation tensor to predict q_value. | |
Arguments: | |
- inputs (:obj:`torch.Tensor`): The dict of input data, including observation and previous rnn state. | |
- inference: (:obj:'bool'): Whether to enable inference forward mode, if True, we unroll the one timestep \ | |
transition, otherwise, we unroll the eentire sequence transitions. | |
- saved_state_timesteps: (:obj:'Optional[list]'): When inference is False, we unroll the sequence \ | |
transitions, then we would use this list to indicate how to save and return hidden state. | |
ArgumentsKeys: | |
- obs (:obj:`torch.Tensor`): The raw observation tensor. | |
- prev_state (:obj:`list`): The previous rnn state tensor, whose structure depends on ``lstm_type``. | |
Returns: | |
- outputs (:obj:`Dict`): The output of DRQN's forward, including logit (q_value) and next state. | |
ReturnsKeys: | |
- logit (:obj:`torch.Tensor`): Discrete Q-value output of each possible action dimension. | |
- next_state (:obj:`list`): The next rnn state tensor, whose structure depends on ``lstm_type``. | |
Shapes: | |
- obs (:obj:`torch.Tensor`): :math:`(B, N)`, where B is batch size and N is ``obs_shape`` | |
- logit (:obj:`torch.Tensor`): :math:`(B, M)`, where B is batch size and M is ``action_shape`` | |
Examples: | |
>>> # Init input's Keys: | |
>>> prev_state = [[torch.randn(1, 1, 64) for __ in range(2)] for _ in range(4)] # B=4 | |
>>> obs = torch.randn(4,64) | |
>>> model = DRQN(64, 64) # arguments: 'obs_shape' and 'action_shape' | |
>>> outputs = model({'obs': inputs, 'prev_state': prev_state}, inference=True) | |
>>> # Check outputs's Keys | |
>>> assert isinstance(outputs, dict) | |
>>> assert outputs['logit'].shape == (4, 64) | |
>>> assert len(outputs['next_state']) == 4 | |
>>> assert all([len(t) == 2 for t in outputs['next_state']]) | |
>>> assert all([t[0].shape == (1, 1, 64) for t in outputs['next_state']]) | |
""" | |
x, prev_state = inputs['obs'], inputs['prev_state'] | |
# for both inference and other cases, the network structure is encoder -> rnn network -> head | |
# the difference is inference take the data with seq_len=1 (or T = 1) | |
# NOTE(rjy): in most situations, set inference=True when evaluate and inference=False when training | |
if inference: | |
x = self.encoder(x) | |
if self.res_link: | |
a = x | |
x = x.unsqueeze(0) # for rnn input, put the seq_len of x as 1 instead of none. | |
# prev_state: DataType: List[Tuple[torch.Tensor]]; Initially, it is a list of None | |
x, next_state = self.rnn(x, prev_state) | |
x = x.squeeze(0) # to delete the seq_len dim to match head network input | |
if self.res_link: | |
x = x + a | |
x = self.head(x) | |
x['next_state'] = next_state | |
return x | |
else: | |
# In order to better explain why rnn needs saved_state and which states need to be stored, | |
# let's take r2d2 as an example | |
# in r2d2, | |
# 1) data['burnin_nstep_obs'] = data['obs'][:bs + self._nstep] | |
# 2) data['main_obs'] = data['obs'][bs:-self._nstep] | |
# 3) data['target_obs'] = data['obs'][bs + self._nstep:] | |
# NOTE(rjy): (T, B, N) or (T, B, C, H, W) | |
assert len(x.shape) in [3, 5], x.shape | |
x = parallel_wrapper(self.encoder)(x) # (T, B, N) | |
if self.res_link: | |
a = x | |
# NOTE(rjy) lstm_embedding stores all hidden_state | |
lstm_embedding = [] | |
# TODO(nyz) how to deal with hidden_size key-value | |
hidden_state_list = [] | |
if saved_state_timesteps is not None: | |
saved_state = [] | |
for t in range(x.shape[0]): # T timesteps | |
# NOTE(rjy) use x[t:t+1] but not x[t] can keep original dimension | |
output, prev_state = self.rnn(x[t:t + 1], prev_state) # output: (1,B, head_hidden_size) | |
if saved_state_timesteps is not None and t + 1 in saved_state_timesteps: | |
saved_state.append(prev_state) | |
lstm_embedding.append(output) | |
hidden_state = [p['h'] for p in prev_state] | |
# only keep ht, {list: x.shape[0]{Tensor:(1, batch_size, head_hidden_size)}} | |
hidden_state_list.append(torch.cat(hidden_state, dim=1)) | |
x = torch.cat(lstm_embedding, 0) # (T, B, head_hidden_size) | |
if self.res_link: | |
x = x + a | |
x = parallel_wrapper(self.head)(x) # (T, B, action_shape) | |
# NOTE(rjy): x['next_state'] is the hidden state of the last timestep inputted to lstm | |
# the last timestep state including the hidden state (h) and the cell state (c) | |
# shape: {list: B{dict: 2{Tensor:(1, 1, head_hidden_size}}} | |
x['next_state'] = prev_state | |
# all hidden state h, this returns a tensor of the dim: seq_len*batch_size*head_hidden_size | |
# This key is used in qtran, the algorithm requires to retain all h_{t} during training | |
x['hidden_state'] = torch.cat(hidden_state_list, dim=0) | |
if saved_state_timesteps is not None: | |
# the selected saved hidden states, including the hidden state (h) and the cell state (c) | |
# in r2d2, set 'saved_hidden_state_timesteps=[self._burnin_step, self._burnin_step + self._nstep]', | |
# then saved_state will record the hidden_state for main_obs and target_obs to | |
# initialize their lstm (h c) | |
x['saved_state'] = saved_state | |
return x | |
class GTrXLDQN(nn.Module): | |
""" | |
Overview: | |
The neural network structure and computation graph of Gated Transformer-XL DQN algorithm, which is the \ | |
enhanced version of DRQN, using Transformer-XL to improve long-term sequential modelling ability. The \ | |
GTrXL-DQN is composed of three parts: ``encoder``, ``head`` and ``core``. The ``encoder`` is used to extract \ | |
the feature from various observation, the ``core`` is used to process the sequential observation and other \ | |
data, and the ``head`` is used to compute the Q value of each action dimension. | |
Interfaces: | |
``__init__``, ``forward``, ``reset_memory``, ``get_memory`` . | |
""" | |
def __init__( | |
self, | |
obs_shape: Union[int, SequenceType], | |
action_shape: Union[int, SequenceType], | |
head_layer_num: int = 1, | |
att_head_dim: int = 16, | |
hidden_size: int = 16, | |
att_head_num: int = 2, | |
att_mlp_num: int = 2, | |
att_layer_num: int = 3, | |
memory_len: int = 64, | |
activation: Optional[nn.Module] = nn.ReLU(), | |
head_norm_type: Optional[str] = None, | |
dropout: float = 0., | |
gru_gating: bool = True, | |
gru_bias: float = 2., | |
dueling: bool = True, | |
encoder_hidden_size_list: SequenceType = [128, 128, 256], | |
encoder_norm_type: Optional[str] = None, | |
) -> None: | |
""" | |
Overview: | |
Initialize the GTrXLDQN model accoding to corresponding input arguments. | |
.. tip:: | |
You can refer to GTrXl class in ``ding.torch_utils.network.gtrxl`` for more details about the input \ | |
arguments. | |
Arguments: | |
- obs_shape (:obj:`Union[int, SequenceType]`): Used by Transformer. Observation's space. | |
- action_shape (:obj:Union[int, SequenceType]): Used by Head. Action's space. | |
- head_layer_num (:obj:`int`): Used by Head. Number of layers. | |
- att_head_dim (:obj:`int`): Used by Transformer. | |
- hidden_size (:obj:`int`): Used by Transformer and Head. | |
- att_head_num (:obj:`int`): Used by Transformer. | |
- att_mlp_num (:obj:`int`): Used by Transformer. | |
- att_layer_num (:obj:`int`): Used by Transformer. | |
- memory_len (:obj:`int`): Used by Transformer. | |
- activation (:obj:`Optional[nn.Module]`): Used by Transformer and Head. if ``None`` then default set to \ | |
``nn.ReLU()``. | |
- head_norm_type (:obj:`Optional[str]`): Used by Head. The type of normalization to use, see \ | |
``ding.torch_utils.fc_block`` for more details`. | |
- dropout (:obj:`bool`): Used by Transformer. | |
- gru_gating (:obj:`bool`): Used by Transformer. | |
- gru_bias (:obj:`float`): Used by Transformer. | |
- dueling (:obj:`bool`): Used by Head. Make the head dueling. | |
- encoder_hidden_size_list(:obj:`SequenceType`): Used by Encoder. The collection of ``hidden_size`` if \ | |
using a custom convolutional encoder. | |
- encoder_norm_type (:obj:`Optional[str]`): Used by Encoder. The type of normalization to use, see \ | |
``ding.torch_utils.fc_block`` for more details`. | |
""" | |
super(GTrXLDQN, self).__init__() | |
self.core = GTrXL( | |
input_dim=obs_shape, | |
head_dim=att_head_dim, | |
embedding_dim=hidden_size, | |
head_num=att_head_num, | |
mlp_num=att_mlp_num, | |
layer_num=att_layer_num, | |
memory_len=memory_len, | |
activation=activation, | |
dropout_ratio=dropout, | |
gru_gating=gru_gating, | |
gru_bias=gru_bias, | |
) | |
if isinstance(obs_shape, int) or len(obs_shape) == 1: | |
raise NotImplementedError("not support obs_shape for pre-defined encoder: {}".format(obs_shape)) | |
# replace the embedding layer of Transformer with Conv Encoder | |
elif len(obs_shape) == 3: | |
assert encoder_hidden_size_list[-1] == hidden_size | |
self.obs_encoder = ConvEncoder( | |
obs_shape, encoder_hidden_size_list, activation=activation, norm_type=encoder_norm_type | |
) | |
self.dropout = nn.Dropout(dropout) | |
self.core.use_embedding_layer = False | |
else: | |
raise RuntimeError( | |
"not support obs_shape for pre-defined encoder: {}, please customize your own GTrXL".format(obs_shape) | |
) | |
# Head Type | |
if dueling: | |
head_cls = DuelingHead | |
else: | |
head_cls = DiscreteHead | |
multi_head = not isinstance(action_shape, int) | |
if multi_head: | |
self.head = MultiHead( | |
head_cls, | |
hidden_size, | |
action_shape, | |
layer_num=head_layer_num, | |
activation=activation, | |
norm_type=head_norm_type | |
) | |
else: | |
self.head = head_cls( | |
hidden_size, action_shape, head_layer_num, activation=activation, norm_type=head_norm_type | |
) | |
def forward(self, x: torch.Tensor) -> Dict: | |
""" | |
Overview: | |
Let input tensor go through GTrXl and the Head sequentially. | |
Arguments: | |
- x (:obj:`torch.Tensor`): input tensor of shape (seq_len, bs, obs_shape). | |
Returns: | |
- out (:obj:`Dict`): run ``GTrXL`` with ``DiscreteHead`` setups and return the result prediction dictionary. | |
ReturnKeys: | |
- logit (:obj:`torch.Tensor`): discrete Q-value output of each action dimension, shape is (B, action_space). | |
- memory (:obj:`torch.Tensor`): memory tensor of size ``(bs x layer_num+1 x memory_len x embedding_dim)``. | |
- transformer_out (:obj:`torch.Tensor`): output tensor of transformer with same size as input ``x``. | |
Examples: | |
>>> # Init input's Keys: | |
>>> obs_dim, seq_len, bs, action_dim = 128, 64, 32, 4 | |
>>> obs = torch.rand(seq_len, bs, obs_dim) | |
>>> model = GTrXLDQN(obs_dim, action_dim) | |
>>> outputs = model(obs) | |
>>> assert isinstance(outputs, dict) | |
""" | |
if len(x.shape) == 5: | |
# 3d obs: cur_seq, bs, ch, h, w | |
x_ = x.reshape([x.shape[0] * x.shape[1]] + list(x.shape[-3:])) | |
x_ = self.dropout(self.obs_encoder(x_)) | |
x = x_.reshape(x.shape[0], x.shape[1], -1) | |
o1 = self.core(x) | |
out = self.head(o1['logit']) | |
# layer_num+1 x memory_len x bs embedding_dim -> bs x layer_num+1 x memory_len x embedding_dim | |
out['memory'] = o1['memory'].permute((2, 0, 1, 3)).contiguous() | |
out['transformer_out'] = o1['logit'] # output of gtrxl, out['logit'] is final output | |
return out | |
def reset_memory(self, batch_size: Optional[int] = None, state: Optional[torch.Tensor] = None) -> None: | |
""" | |
Overview: | |
Clear or reset the memory of GTrXL. | |
Arguments: | |
- batch_size (:obj:`Optional[int]`): The number of samples in a training batch. | |
- state (:obj:`Optional[torch.Tensor]`): The input memory data, whose shape is \ | |
(layer_num, memory_len, bs, embedding_dim). | |
""" | |
self.core.reset_memory(batch_size, state) | |
def get_memory(self) -> Optional[torch.Tensor]: | |
""" | |
Overview: | |
Return the memory of GTrXL. | |
Returns: | |
- memory: (:obj:`Optional[torch.Tensor]`): output memory or None if memory has not been initialized, \ | |
whose shape is (layer_num, memory_len, bs, embedding_dim). | |
""" | |
return self.core.get_memory() | |