Spaces:
Sleeping
Sleeping
from typing import Union, Dict, Optional | |
from easydict import EasyDict | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from ding.utils import SequenceType, squeeze, MODEL_REGISTRY | |
from ..common import RegressionHead, ReparameterizationHead, DiscreteHead, MultiHead, \ | |
FCEncoder, ConvEncoder | |
class ContinuousQAC(nn.Module): | |
""" | |
Overview: | |
The neural network and computation graph of algorithms related to Q-value Actor-Critic (QAC), such as \ | |
DDPG/TD3/SAC. This model now supports continuous and hybrid action space. The ContinuousQAC is composed of \ | |
four parts: ``actor_encoder``, ``critic_encoder``, ``actor_head`` and ``critic_head``. Encoders are used to \ | |
extract the feature from various observation. Heads are used to predict corresponding Q-value or action logit. \ | |
In high-dimensional observation space like 2D image, we often use a shared encoder for both ``actor_encoder`` \ | |
and ``critic_encoder``. In low-dimensional observation space like 1D vector, we often use different encoders. | |
Interfaces: | |
``__init__``, ``forward``, ``compute_actor``, ``compute_critic`` | |
""" | |
mode = ['compute_actor', 'compute_critic'] | |
def __init__( | |
self, | |
obs_shape: Union[int, SequenceType], | |
action_shape: Union[int, SequenceType, EasyDict], | |
action_space: str, | |
twin_critic: bool = False, | |
actor_head_hidden_size: int = 64, | |
actor_head_layer_num: int = 1, | |
critic_head_hidden_size: int = 64, | |
critic_head_layer_num: int = 1, | |
activation: Optional[nn.Module] = nn.ReLU(), | |
norm_type: Optional[str] = None, | |
encoder_hidden_size_list: Optional[SequenceType] = None, | |
share_encoder: Optional[bool] = False, | |
) -> None: | |
""" | |
Overview: | |
Initailize the ContinuousQAC Model according to input arguments. | |
Arguments: | |
- obs_shape (:obj:`Union[int, SequenceType]`): Observation's shape, such as 128, (156, ). | |
- action_shape (:obj:`Union[int, SequenceType, EasyDict]`): Action's shape, such as 4, (3, ), \ | |
EasyDict({'action_type_shape': 3, 'action_args_shape': 4}). | |
- action_space (:obj:`str`): The type of action space, including [``regression``, ``reparameterization``, \ | |
``hybrid``], ``regression`` is used for DDPG/TD3, ``reparameterization`` is used for SAC and \ | |
``hybrid`` for PADDPG. | |
- twin_critic (:obj:`bool`): Whether to use twin critic, one of tricks in TD3. | |
- actor_head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` to pass to actor head. | |
- actor_head_layer_num (:obj:`int`): The num of layers used in the actor network to compute action. | |
- critic_head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` to pass to critic head. | |
- critic_head_layer_num (:obj:`int`): The num of layers used in the critic network to compute Q-value. | |
- activation (:obj:`Optional[nn.Module]`): The type of activation function to use in ``MLP`` \ | |
after each FC layer, if ``None`` then default set to ``nn.ReLU()``. | |
- norm_type (:obj:`Optional[str]`): The type of normalization to after network layer (FC, Conv), \ | |
see ``ding.torch_utils.network`` for more details. | |
- encoder_hidden_size_list (:obj:`SequenceType`): Collection of ``hidden_size`` to pass to ``Encoder``, \ | |
the last element must match ``head_hidden_size``, this argument is only used in image observation. | |
- share_encoder (:obj:`Optional[bool]`): Whether to share encoder between actor and critic. | |
""" | |
super(ContinuousQAC, self).__init__() | |
obs_shape: int = squeeze(obs_shape) | |
action_shape = squeeze(action_shape) | |
self.action_shape = action_shape | |
self.action_space = action_space | |
assert self.action_space in ['regression', 'reparameterization', 'hybrid'], self.action_space | |
# encoder | |
self.share_encoder = share_encoder | |
if np.isscalar(obs_shape) or len(obs_shape) == 1: | |
assert not self.share_encoder, "Vector observation doesn't need share encoder." | |
assert encoder_hidden_size_list is None, "Vector obs encoder only uses one layer nn.Linear" | |
# Because there is already a layer nn.Linear in the head, so we use nn.Identity here to keep | |
# compatible with the image observation and avoid adding an extra layer nn.Linear. | |
self.actor_encoder = nn.Identity() | |
self.critic_encoder = nn.Identity() | |
encoder_output_size = obs_shape | |
elif len(obs_shape) == 3: | |
def setup_conv_encoder(): | |
kernel_size = [3 for _ in range(len(encoder_hidden_size_list))] | |
stride = [2] + [1 for _ in range(len(encoder_hidden_size_list) - 1)] | |
return ConvEncoder( | |
obs_shape, | |
encoder_hidden_size_list, | |
activation=activation, | |
norm_type=norm_type, | |
kernel_size=kernel_size, | |
stride=stride | |
) | |
if self.share_encoder: | |
encoder = setup_conv_encoder() | |
self.actor_encoder = self.critic_encoder = encoder | |
else: | |
self.actor_encoder = setup_conv_encoder() | |
self.critic_encoder = setup_conv_encoder() | |
encoder_output_size = self.actor_encoder.output_size | |
else: | |
raise RuntimeError("not support observation shape: {}".format(obs_shape)) | |
# head | |
if self.action_space == 'regression': # DDPG, TD3 | |
self.actor_head = nn.Sequential( | |
nn.Linear(encoder_output_size, actor_head_hidden_size), activation, | |
RegressionHead( | |
actor_head_hidden_size, | |
action_shape, | |
actor_head_layer_num, | |
final_tanh=True, | |
activation=activation, | |
norm_type=norm_type | |
) | |
) | |
elif self.action_space == 'reparameterization': # SAC | |
self.actor_head = nn.Sequential( | |
nn.Linear(encoder_output_size, actor_head_hidden_size), activation, | |
ReparameterizationHead( | |
actor_head_hidden_size, | |
action_shape, | |
actor_head_layer_num, | |
sigma_type='conditioned', | |
activation=activation, | |
norm_type=norm_type | |
) | |
) | |
elif self.action_space == 'hybrid': # PADDPG | |
# hybrid action space: action_type(discrete) + action_args(continuous), | |
# such as {'action_type_shape': torch.LongTensor([0]), 'action_args_shape': torch.FloatTensor([0.1, -0.27])} | |
action_shape.action_args_shape = squeeze(action_shape.action_args_shape) | |
action_shape.action_type_shape = squeeze(action_shape.action_type_shape) | |
actor_action_args = nn.Sequential( | |
nn.Linear(encoder_output_size, actor_head_hidden_size), activation, | |
RegressionHead( | |
actor_head_hidden_size, | |
action_shape.action_args_shape, | |
actor_head_layer_num, | |
final_tanh=True, | |
activation=activation, | |
norm_type=norm_type | |
) | |
) | |
actor_action_type = nn.Sequential( | |
nn.Linear(encoder_output_size, actor_head_hidden_size), activation, | |
DiscreteHead( | |
actor_head_hidden_size, | |
action_shape.action_type_shape, | |
actor_head_layer_num, | |
activation=activation, | |
norm_type=norm_type, | |
) | |
) | |
self.actor_head = nn.ModuleList([actor_action_type, actor_action_args]) | |
self.twin_critic = twin_critic | |
if self.action_space == 'hybrid': | |
critic_input_size = encoder_output_size + action_shape.action_type_shape + action_shape.action_args_shape | |
else: | |
critic_input_size = encoder_output_size + action_shape | |
if self.twin_critic: | |
self.critic_head = nn.ModuleList() | |
for _ in range(2): | |
self.critic_head.append( | |
nn.Sequential( | |
nn.Linear(critic_input_size, critic_head_hidden_size), activation, | |
RegressionHead( | |
critic_head_hidden_size, | |
1, | |
critic_head_layer_num, | |
final_tanh=False, | |
activation=activation, | |
norm_type=norm_type | |
) | |
) | |
) | |
else: | |
self.critic_head = nn.Sequential( | |
nn.Linear(critic_input_size, critic_head_hidden_size), activation, | |
RegressionHead( | |
critic_head_hidden_size, | |
1, | |
critic_head_layer_num, | |
final_tanh=False, | |
activation=activation, | |
norm_type=norm_type | |
) | |
) | |
# Convenient for calling some apis (e.g. self.critic.parameters()), | |
# but may cause misunderstanding when `print(self)` | |
self.actor = nn.ModuleList([self.actor_encoder, self.actor_head]) | |
self.critic = nn.ModuleList([self.critic_encoder, self.critic_head]) | |
def forward(self, inputs: Union[torch.Tensor, Dict[str, torch.Tensor]], mode: str) -> Dict[str, torch.Tensor]: | |
""" | |
Overview: | |
QAC forward computation graph, input observation tensor to predict Q-value or action logit. Different \ | |
``mode`` will forward with different network modules to get different outputs and save computation. | |
Arguments: | |
- inputs (:obj:`Union[torch.Tensor, Dict[str, torch.Tensor]]`): The input data for forward computation \ | |
graph, for ``compute_actor``, it is the observation tensor, for ``compute_critic``, it is the \ | |
dict data including obs and action tensor. | |
- mode (:obj:`str`): The forward mode, all the modes are defined in the beginning of this class. | |
Returns: | |
- output (:obj:`Dict[str, torch.Tensor]`): The output dict of QAC forward computation graph, whose \ | |
key-values vary in different forward modes. | |
Examples (Actor): | |
>>> # Regression mode | |
>>> model = ContinuousQAC(64, 6, 'regression') | |
>>> obs = torch.randn(4, 64) | |
>>> actor_outputs = model(obs,'compute_actor') | |
>>> assert actor_outputs['action'].shape == torch.Size([4, 6]) | |
>>> # Reparameterization Mode | |
>>> model = ContinuousQAC(64, 6, 'reparameterization') | |
>>> obs = torch.randn(4, 64) | |
>>> actor_outputs = model(obs,'compute_actor') | |
>>> assert actor_outputs['logit'][0].shape == torch.Size([4, 6]) # mu | |
>>> actor_outputs['logit'][1].shape == torch.Size([4, 6]) # sigma | |
Examples (Critic): | |
>>> inputs = {'obs': torch.randn(4, 8), 'action': torch.randn(4, 1)} | |
>>> model = ContinuousQAC(obs_shape=(8, ),action_shape=1, action_space='regression') | |
>>> assert model(inputs, mode='compute_critic')['q_value'].shape == (4, ) # q value | |
""" | |
assert mode in self.mode, "not support forward mode: {}/{}".format(mode, self.mode) | |
return getattr(self, mode)(inputs) | |
def compute_actor(self, obs: torch.Tensor) -> Dict[str, Union[torch.Tensor, Dict[str, torch.Tensor]]]: | |
""" | |
Overview: | |
QAC forward computation graph for actor part, input observation tensor to predict action or action logit. | |
Arguments: | |
- x (:obj:`torch.Tensor`): The input observation tensor data. | |
Returns: | |
- outputs (:obj:`Dict[str, Union[torch.Tensor, Dict[str, torch.Tensor]]]`): Actor output dict varying \ | |
from action_space: ``regression``, ``reparameterization``, ``hybrid``. | |
ReturnsKeys (regression): | |
- action (:obj:`torch.Tensor`): Continuous action with same size as ``action_shape``, usually in DDPG/TD3. | |
ReturnsKeys (reparameterization): | |
- logit (:obj:`Dict[str, torch.Tensor]`): The predictd reparameterization action logit, usually in SAC. \ | |
It is a list containing two tensors: ``mu`` and ``sigma``. The former is the mean of the gaussian \ | |
distribution, the latter is the standard deviation of the gaussian distribution. | |
ReturnsKeys (hybrid): | |
- logit (:obj:`torch.Tensor`): The predicted discrete action type logit, it will be the same dimension \ | |
as ``action_type_shape``, i.e., all the possible discrete action types. | |
- action_args (:obj:`torch.Tensor`): Continuous action arguments with same size as ``action_args_shape``. | |
Shapes: | |
- obs (:obj:`torch.Tensor`): :math:`(B, N0)`, B is batch size and N0 corresponds to ``obs_shape``. | |
- action (:obj:`torch.Tensor`): :math:`(B, N1)`, B is batch size and N1 corresponds to ``action_shape``. | |
- logit.mu (:obj:`torch.Tensor`): :math:`(B, N1)`, B is batch size and N1 corresponds to ``action_shape``. | |
- logit.sigma (:obj:`torch.Tensor`): :math:`(B, N1)`, B is batch size. | |
- logit (:obj:`torch.Tensor`): :math:`(B, N2)`, B is batch size and N2 corresponds to \ | |
``action_shape.action_type_shape``. | |
- action_args (:obj:`torch.Tensor`): :math:`(B, N3)`, B is batch size and N3 corresponds to \ | |
``action_shape.action_args_shape``. | |
Examples: | |
>>> # Regression mode | |
>>> model = ContinuousQAC(64, 6, 'regression') | |
>>> obs = torch.randn(4, 64) | |
>>> actor_outputs = model(obs,'compute_actor') | |
>>> assert actor_outputs['action'].shape == torch.Size([4, 6]) | |
>>> # Reparameterization Mode | |
>>> model = ContinuousQAC(64, 6, 'reparameterization') | |
>>> obs = torch.randn(4, 64) | |
>>> actor_outputs = model(obs,'compute_actor') | |
>>> assert actor_outputs['logit'][0].shape == torch.Size([4, 6]) # mu | |
>>> actor_outputs['logit'][1].shape == torch.Size([4, 6]) # sigma | |
""" | |
obs = self.actor_encoder(obs) | |
if self.action_space == 'regression': | |
x = self.actor_head(obs) | |
return {'action': x['pred']} | |
elif self.action_space == 'reparameterization': | |
x = self.actor_head(obs) | |
return {'logit': [x['mu'], x['sigma']]} | |
elif self.action_space == 'hybrid': | |
logit = self.actor_head[0](obs) | |
action_args = self.actor_head[1](obs) | |
return {'logit': logit['logit'], 'action_args': action_args['pred']} | |
def compute_critic(self, inputs: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: | |
""" | |
Overview: | |
QAC forward computation graph for critic part, input observation and action tensor to predict Q-value. | |
Arguments: | |
- inputs (:obj:`Dict[str, torch.Tensor]`): The dict of input data, including ``obs`` and ``action`` \ | |
tensor, also contains ``logit`` and ``action_args`` tensor in hybrid action_space. | |
ArgumentsKeys: | |
- obs: (:obj:`torch.Tensor`): Observation tensor data, now supports a batch of 1-dim vector data. | |
- action (:obj:`Union[torch.Tensor, Dict]`): Continuous action with same size as ``action_shape``. | |
- logit (:obj:`torch.Tensor`): Discrete action logit, only in hybrid action_space. | |
- action_args (:obj:`torch.Tensor`): Continuous action arguments, only in hybrid action_space. | |
Returns: | |
- outputs (:obj:`Dict[str, torch.Tensor]`): The output dict of QAC's forward computation graph for critic, \ | |
including ``q_value``. | |
ReturnKeys: | |
- q_value (:obj:`torch.Tensor`): Q value tensor with same size as batch size. | |
Shapes: | |
- obs (:obj:`torch.Tensor`): :math:`(B, N1)`, where B is batch size and N1 is ``obs_shape``. | |
- logit (:obj:`torch.Tensor`): :math:`(B, N2)`, B is batch size and N2 corresponds to \ | |
``action_shape.action_type_shape``. | |
- action_args (:obj:`torch.Tensor`): :math:`(B, N3)`, B is batch size and N3 corresponds to \ | |
``action_shape.action_args_shape``. | |
- action (:obj:`torch.Tensor`): :math:`(B, N4)`, where B is batch size and N4 is ``action_shape``. | |
- q_value (:obj:`torch.Tensor`): :math:`(B, )`, where B is batch size. | |
Examples: | |
>>> inputs = {'obs': torch.randn(4, 8), 'action': torch.randn(4, 1)} | |
>>> model = ContinuousQAC(obs_shape=(8, ),action_shape=1, action_space='regression') | |
>>> assert model(inputs, mode='compute_critic')['q_value'].shape == (4, ) # q value | |
""" | |
obs, action = inputs['obs'], inputs['action'] | |
obs = self.critic_encoder(obs) | |
assert len(obs.shape) == 2 | |
if self.action_space == 'hybrid': | |
action_type_logit = inputs['logit'] | |
action_type_logit = torch.softmax(action_type_logit, dim=-1) | |
action_args = action['action_args'] | |
if len(action_args.shape) == 1: | |
action_args = action_args.unsqueeze(1) | |
x = torch.cat([obs, action_type_logit, action_args], dim=1) | |
else: | |
if len(action.shape) == 1: # (B, ) -> (B, 1) | |
action = action.unsqueeze(1) | |
x = torch.cat([obs, action], dim=1) | |
if self.twin_critic: | |
x = [m(x)['pred'] for m in self.critic_head] | |
else: | |
x = self.critic_head(x)['pred'] | |
return {'q_value': x} | |
class DiscreteQAC(nn.Module): | |
""" | |
Overview: | |
The neural network and computation graph of algorithms related to discrete action Q-value Actor-Critic (QAC), \ | |
such as DiscreteSAC. This model now supports only discrete action space. The DiscreteQAC is composed of \ | |
four parts: ``actor_encoder``, ``critic_encoder``, ``actor_head`` and ``critic_head``. Encoders are used to \ | |
extract the feature from various observation. Heads are used to predict corresponding Q-value or action logit. \ | |
In high-dimensional observation space like 2D image, we often use a shared encoder for both ``actor_encoder`` \ | |
and ``critic_encoder``. In low-dimensional observation space like 1D vector, we often use different encoders. | |
Interfaces: | |
``__init__``, ``forward``, ``compute_actor``, ``compute_critic`` | |
""" | |
mode = ['compute_actor', 'compute_critic'] | |
def __init__( | |
self, | |
obs_shape: Union[int, SequenceType], | |
action_shape: Union[int, SequenceType], | |
twin_critic: bool = False, | |
actor_head_hidden_size: int = 64, | |
actor_head_layer_num: int = 1, | |
critic_head_hidden_size: int = 64, | |
critic_head_layer_num: int = 1, | |
activation: Optional[nn.Module] = nn.ReLU(), | |
norm_type: Optional[str] = None, | |
encoder_hidden_size_list: SequenceType = None, | |
share_encoder: Optional[bool] = False, | |
) -> None: | |
""" | |
Overview: | |
Initailize the DiscreteQAC Model according to input arguments. | |
Arguments: | |
- obs_shape (:obj:`Union[int, SequenceType]`): Observation's shape, such as 128, (156, ). | |
- action_shape (:obj:`Union[int, SequenceType, EasyDict]`): Action's shape, such as 4, (3, ). | |
- twin_critic (:obj:`bool`): Whether to use twin critic. | |
- actor_head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` to pass to actor head. | |
- actor_head_layer_num (:obj:`int`): The num of layers used in the actor network to compute action. | |
- critic_head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` to pass to critic head. | |
- critic_head_layer_num (:obj:`int`): The num of layers used in the critic network to compute Q-value. | |
- activation (:obj:`Optional[nn.Module]`): The type of activation function to use in ``MLP`` \ | |
after each FC layer, if ``None`` then default set to ``nn.ReLU()``. | |
- norm_type (:obj:`Optional[str]`): The type of normalization to after network layer (FC, Conv), \ | |
see ``ding.torch_utils.network`` for more details. | |
- encoder_hidden_size_list (:obj:`SequenceType`): Collection of ``hidden_size`` to pass to ``Encoder``, \ | |
the last element must match ``head_hidden_size``, this argument is only used in image observation. | |
- share_encoder (:obj:`Optional[bool]`): Whether to share encoder between actor and critic. | |
""" | |
super(DiscreteQAC, self).__init__() | |
obs_shape: int = squeeze(obs_shape) | |
action_shape: int = squeeze(action_shape) | |
# encoder | |
self.share_encoder = share_encoder | |
if np.isscalar(obs_shape) or len(obs_shape) == 1: | |
assert not self.share_encoder, "Vector observation doesn't need share encoder." | |
assert encoder_hidden_size_list is None, "Vector obs encoder only uses one layer nn.Linear" | |
# Because there is already a layer nn.Linear in the head, so we use nn.Identity here to keep | |
# compatible with the image observation and avoid adding an extra layer nn.Linear. | |
self.actor_encoder = nn.Identity() | |
self.critic_encoder = nn.Identity() | |
encoder_output_size = obs_shape | |
elif len(obs_shape) == 3: | |
def setup_conv_encoder(): | |
kernel_size = [3 for _ in range(len(encoder_hidden_size_list))] | |
stride = [2] + [1 for _ in range(len(encoder_hidden_size_list) - 1)] | |
return ConvEncoder( | |
obs_shape, | |
encoder_hidden_size_list, | |
activation=activation, | |
norm_type=norm_type, | |
kernel_size=kernel_size, | |
stride=stride | |
) | |
if self.share_encoder: | |
encoder = setup_conv_encoder() | |
self.actor_encoder = self.critic_encoder = encoder | |
else: | |
self.actor_encoder = setup_conv_encoder() | |
self.critic_encoder = setup_conv_encoder() | |
encoder_output_size = self.actor_encoder.output_size | |
else: | |
raise RuntimeError("not support observation shape: {}".format(obs_shape)) | |
# head | |
self.actor_head = nn.Sequential( | |
nn.Linear(encoder_output_size, actor_head_hidden_size), activation, | |
DiscreteHead( | |
actor_head_hidden_size, action_shape, actor_head_layer_num, activation=activation, norm_type=norm_type | |
) | |
) | |
self.twin_critic = twin_critic | |
if self.twin_critic: | |
self.critic_head = nn.ModuleList() | |
for _ in range(2): | |
self.critic_head.append( | |
nn.Sequential( | |
nn.Linear(encoder_output_size, critic_head_hidden_size), activation, | |
DiscreteHead( | |
critic_head_hidden_size, | |
action_shape, | |
critic_head_layer_num, | |
activation=activation, | |
norm_type=norm_type | |
) | |
) | |
) | |
else: | |
self.critic_head = nn.Sequential( | |
nn.Linear(encoder_output_size, critic_head_hidden_size), activation, | |
DiscreteHead( | |
critic_head_hidden_size, | |
action_shape, | |
critic_head_layer_num, | |
activation=activation, | |
norm_type=norm_type | |
) | |
) | |
# Convenient for calling some apis (e.g. self.critic.parameters()), | |
# but may cause misunderstanding when `print(self)` | |
self.actor = nn.ModuleList([self.actor_encoder, self.actor_head]) | |
self.critic = nn.ModuleList([self.critic_encoder, self.critic_head]) | |
def forward(self, inputs: torch.Tensor, mode: str) -> Dict[str, torch.Tensor]: | |
""" | |
Overview: | |
QAC forward computation graph, input observation tensor to predict Q-value or action logit. Different \ | |
``mode`` will forward with different network modules to get different outputs and save computation. | |
Arguments: | |
- inputs (:obj:`torch.Tensor`): The input observation tensor data. | |
- mode (:obj:`str`): The forward mode, all the modes are defined in the beginning of this class. | |
Returns: | |
- output (:obj:`Dict[str, torch.Tensor]`): The output dict of QAC forward computation graph, whose \ | |
key-values vary in different forward modes. | |
Examples (Actor): | |
>>> model = DiscreteQAC(64, 6) | |
>>> obs = torch.randn(4, 64) | |
>>> actor_outputs = model(obs,'compute_actor') | |
>>> assert actor_outputs['logit'].shape == torch.Size([4, 6]) | |
Examples(Critic): | |
>>> model = DiscreteQAC(64, 6, twin_critic=False) | |
>>> obs = torch.randn(4, 64) | |
>>> actor_outputs = model(obs,'compute_critic') | |
>>> assert actor_outputs['q_value'].shape == torch.Size([4, 6]) | |
""" | |
assert mode in self.mode, "not support forward mode: {}/{}".format(mode, self.mode) | |
return getattr(self, mode)(inputs) | |
def compute_actor(self, inputs: torch.Tensor) -> Dict[str, torch.Tensor]: | |
""" | |
Overview: | |
QAC forward computation graph for actor part, input observation tensor to predict action or action logit. | |
Arguments: | |
- inputs (:obj:`torch.Tensor`): The input observation tensor data. | |
Returns: | |
- outputs (:obj:`Dict[str, torch.Tensor]`): The output dict of QAC forward computation graph for actor, \ | |
including discrete action ``logit``. | |
ReturnsKeys: | |
- logit (:obj:`torch.Tensor`): The predicted discrete action type logit, it will be the same dimension \ | |
as ``action_shape``, i.e., all the possible discrete action choices. | |
Shapes: | |
- inputs (:obj:`torch.Tensor`): :math:`(B, N0)`, B is batch size and N0 corresponds to ``obs_shape``. | |
- logit (:obj:`torch.Tensor`): :math:`(B, N2)`, B is batch size and N2 corresponds to \ | |
``action_shape``. | |
Examples: | |
>>> model = DiscreteQAC(64, 6) | |
>>> obs = torch.randn(4, 64) | |
>>> actor_outputs = model(obs,'compute_actor') | |
>>> assert actor_outputs['logit'].shape == torch.Size([4, 6]) | |
""" | |
x = self.actor_encoder(inputs) | |
x = self.actor_head(x) | |
return {'logit': x['logit']} | |
def compute_critic(self, inputs: torch.Tensor) -> Dict[str, torch.Tensor]: | |
""" | |
Overview: | |
QAC forward computation graph for critic part, input observation to predict Q-value for each possible \ | |
discrete action choices. | |
Arguments: | |
- inputs (:obj:`torch.Tensor`): The input observation tensor data. | |
Returns: | |
- outputs (:obj:`Dict[str, torch.Tensor]`): The output dict of QAC forward computation graph for critic, \ | |
including ``q_value`` for each possible discrete action choices. | |
ReturnKeys: | |
- q_value (:obj:`torch.Tensor`): The predicted Q-value for each possible discrete action choices, it will \ | |
be the same dimension as ``action_shape`` and used to calculate the loss. | |
Shapes: | |
- obs (:obj:`torch.Tensor`): :math:`(B, N1)`, where B is batch size and N1 is ``obs_shape``. | |
- q_value (:obj:`torch.Tensor`): :math:`(B, N2)`, where B is batch size and N2 is ``action_shape``. | |
Examples: | |
>>> model = DiscreteQAC(64, 6, twin_critic=False) | |
>>> obs = torch.randn(4, 64) | |
>>> actor_outputs = model(obs,'compute_critic') | |
>>> assert actor_outputs['q_value'].shape == torch.Size([4, 6]) | |
""" | |
inputs = self.critic_encoder(inputs) | |
if self.twin_critic: | |
x = [m(inputs)['logit'] for m in self.critic_head] | |
else: | |
x = self.critic_head(inputs)['logit'] | |
return {'q_value': x} | |