Spaces:
Sleeping
Sleeping
from typing import Union, Dict, Optional | |
import torch | |
import torch.nn as nn | |
from ding.utils import SequenceType, squeeze, MODEL_REGISTRY | |
from ..common import RegressionHead, ReparameterizationHead, DistributionHead | |
class QACDIST(nn.Module): | |
""" | |
Overview: | |
The QAC model with distributional Q-value. | |
Interfaces: | |
``__init__``, ``forward``, ``compute_actor``, ``compute_critic`` | |
""" | |
mode = ['compute_actor', 'compute_critic'] | |
def __init__( | |
self, | |
obs_shape: Union[int, SequenceType], | |
action_shape: Union[int, SequenceType], | |
action_space: str = "regression", | |
critic_head_type: str = "categorical", | |
actor_head_hidden_size: int = 64, | |
actor_head_layer_num: int = 1, | |
critic_head_hidden_size: int = 64, | |
critic_head_layer_num: int = 1, | |
activation: Optional[nn.Module] = nn.ReLU(), | |
norm_type: Optional[str] = None, | |
v_min: Optional[float] = -10, | |
v_max: Optional[float] = 10, | |
n_atom: Optional[int] = 51, | |
) -> None: | |
""" | |
Overview: | |
Init the QAC Distributional Model according to arguments. | |
Arguments: | |
- obs_shape (:obj:`Union[int, SequenceType]`): Observation's space. | |
- action_shape (:obj:`Union[int, SequenceType]`): Action's space. | |
- action_space (:obj:`str`): Whether choose ``regression`` or ``reparameterization``. | |
- critic_head_type (:obj:`str`): Only ``categorical``. | |
- actor_head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` to pass to actor-nn's ``Head``. | |
- actor_head_layer_num (:obj:`int`): | |
The num of layers used in the network to compute Q value output for actor's nn. | |
- critic_head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` to pass to critic-nn's ``Head``. | |
- critic_head_layer_num (:obj:`int`): | |
The num of layers used in the network to compute Q value output for critic's nn. | |
- activation (:obj:`Optional[nn.Module]`): | |
The type of activation function to use in ``MLP`` the after ``layer_fn``, | |
if ``None`` then default set to ``nn.ReLU()`` | |
- norm_type (:obj:`Optional[str]`): | |
The type of normalization to use, see ``ding.torch_utils.fc_block`` for more details. | |
- v_min (:obj:`int`): Value of the smallest atom | |
- v_max (:obj:`int`): Value of the largest atom | |
- n_atom (:obj:`int`): Number of atoms in the support | |
""" | |
super(QACDIST, self).__init__() | |
obs_shape: int = squeeze(obs_shape) | |
action_shape: int = squeeze(action_shape) | |
self.action_space = action_space | |
assert self.action_space in ['regression', 'reparameterization'] | |
if self.action_space == 'regression': | |
self.actor = nn.Sequential( | |
nn.Linear(obs_shape, actor_head_hidden_size), activation, | |
RegressionHead( | |
actor_head_hidden_size, | |
action_shape, | |
actor_head_layer_num, | |
final_tanh=True, | |
activation=activation, | |
norm_type=norm_type | |
) | |
) | |
elif self.action_space == 'reparameterization': | |
self.actor = nn.Sequential( | |
nn.Linear(obs_shape, actor_head_hidden_size), activation, | |
ReparameterizationHead( | |
actor_head_hidden_size, | |
action_shape, | |
actor_head_layer_num, | |
sigma_type='conditioned', | |
activation=activation, | |
norm_type=norm_type | |
) | |
) | |
self.critic_head_type = critic_head_type | |
assert self.critic_head_type in ['categorical'], self.critic_head_type | |
if self.critic_head_type == 'categorical': | |
self.critic = nn.Sequential( | |
nn.Linear(obs_shape + action_shape, critic_head_hidden_size), activation, | |
DistributionHead( | |
critic_head_hidden_size, | |
1, | |
critic_head_layer_num, | |
n_atom=n_atom, | |
v_min=v_min, | |
v_max=v_max, | |
activation=activation, | |
norm_type=norm_type | |
) | |
) | |
def forward(self, inputs: Union[torch.Tensor, Dict], mode: str) -> Dict: | |
""" | |
Overview: | |
Use observation and action tensor to predict output. | |
Parameter updates with QACDIST's MLPs forward setup. | |
Arguments: | |
Forward with ``'compute_actor'``: | |
- inputs (:obj:`torch.Tensor`): | |
The encoded embedding tensor, determined with given ``hidden_size``, i.e. ``(B, N=hidden_size)``. | |
Whether ``actor_head_hidden_size`` or ``critic_head_hidden_size`` depend on ``mode``. | |
Forward with ``'compute_critic'``, inputs (`Dict`) Necessary Keys: | |
- ``obs``, ``action`` encoded tensors. | |
- mode (:obj:`str`): Name of the forward mode. | |
Returns: | |
- outputs (:obj:`Dict`): Outputs of network forward. | |
Forward with ``'compute_actor'``, Necessary Keys (either): | |
- action (:obj:`torch.Tensor`): Action tensor with same size as input ``x``. | |
- logit (:obj:`torch.Tensor`): | |
Logit tensor encoding ``mu`` and ``sigma``, both with same size as input ``x``. | |
Forward with ``'compute_critic'``, Necessary Keys: | |
- q_value (:obj:`torch.Tensor`): Q value tensor with same size as batch size. | |
- distribution (:obj:`torch.Tensor`): Q value distribution tensor. | |
Actor Shapes: | |
- inputs (:obj:`torch.Tensor`): :math:`(B, N0)`, B is batch size and N0 corresponds to ``hidden_size`` | |
- action (:obj:`torch.Tensor`): :math:`(B, N0)` | |
- q_value (:obj:`torch.FloatTensor`): :math:`(B, )`, where B is batch size. | |
Critic Shapes: | |
- obs (:obj:`torch.Tensor`): :math:`(B, N1)`, where B is batch size and N1 is ``obs_shape`` | |
- action (:obj:`torch.Tensor`): :math:`(B, N2)`, where B is batch size and N2 is``action_shape`` | |
- q_value (:obj:`torch.FloatTensor`): :math:`(B, N2)`, where B is batch size and N2 is ``action_shape`` | |
- distribution (:obj:`torch.FloatTensor`): :math:`(B, 1, N3)`, where B is batch size and N3 is ``num_atom`` | |
Actor Examples: | |
>>> # Regression mode | |
>>> model = QACDIST(64, 64, 'regression') | |
>>> inputs = torch.randn(4, 64) | |
>>> actor_outputs = model(inputs,'compute_actor') | |
>>> assert actor_outputs['action'].shape == torch.Size([4, 64]) | |
>>> # Reparameterization Mode | |
>>> model = QACDIST(64, 64, 'reparameterization') | |
>>> inputs = torch.randn(4, 64) | |
>>> actor_outputs = model(inputs,'compute_actor') | |
>>> actor_outputs['logit'][0].shape # mu | |
>>> torch.Size([4, 64]) | |
>>> actor_outputs['logit'][1].shape # sigma | |
>>> torch.Size([4, 64]) | |
Critic Examples: | |
>>> # Categorical mode | |
>>> inputs = {'obs': torch.randn(4,N), 'action': torch.randn(4,1)} | |
>>> model = QACDIST(obs_shape=(N, ),action_shape=1,action_space='regression', \ | |
... critic_head_type='categorical', n_atoms=51) | |
>>> q_value = model(inputs, mode='compute_critic') # q value | |
>>> assert q_value['q_value'].shape == torch.Size([4, 1]) | |
>>> assert q_value['distribution'].shape == torch.Size([4, 1, 51]) | |
""" | |
assert mode in self.mode, "not support forward mode: {}/{}".format(mode, self.mode) | |
return getattr(self, mode)(inputs) | |
def compute_actor(self, inputs: torch.Tensor) -> Dict: | |
""" | |
Overview: | |
Use encoded embedding tensor to predict output. | |
Execute parameter updates with ``'compute_actor'`` mode | |
Use encoded embedding tensor to predict output. | |
Arguments: | |
- inputs (:obj:`torch.Tensor`): | |
The encoded embedding tensor, determined with given ``hidden_size``, i.e. ``(B, N=hidden_size)``. | |
``hidden_size = actor_head_hidden_size`` | |
- mode (:obj:`str`): Name of the forward mode. | |
Returns: | |
- outputs (:obj:`Dict`): Outputs of forward pass encoder and head. | |
ReturnsKeys (either): | |
- action (:obj:`torch.Tensor`): Continuous action tensor with same size as ``action_shape``. | |
- logit (:obj:`torch.Tensor`): | |
Logit tensor encoding ``mu`` and ``sigma``, both with same size as input ``x``. | |
Shapes: | |
- inputs (:obj:`torch.Tensor`): :math:`(B, N0)`, B is batch size and N0 corresponds to ``hidden_size`` | |
- action (:obj:`torch.Tensor`): :math:`(B, N0)` | |
- logit (:obj:`list`): 2 elements, mu and sigma, each is the shape of :math:`(B, N0)`. | |
- q_value (:obj:`torch.FloatTensor`): :math:`(B, )`, B is batch size. | |
Examples: | |
>>> # Regression mode | |
>>> model = QACDIST(64, 64, 'regression') | |
>>> inputs = torch.randn(4, 64) | |
>>> actor_outputs = model(inputs,'compute_actor') | |
>>> assert actor_outputs['action'].shape == torch.Size([4, 64]) | |
>>> # Reparameterization Mode | |
>>> model = QACDIST(64, 64, 'reparameterization') | |
>>> inputs = torch.randn(4, 64) | |
>>> actor_outputs = model(inputs,'compute_actor') | |
>>> actor_outputs['logit'][0].shape # mu | |
>>> torch.Size([4, 64]) | |
>>> actor_outputs['logit'][1].shape # sigma | |
>>> torch.Size([4, 64]) | |
""" | |
x = self.actor(inputs) | |
if self.action_space == 'regression': | |
return {'action': x['pred']} | |
elif self.action_space == 'reparameterization': | |
return {'logit': [x['mu'], x['sigma']]} | |
def compute_critic(self, inputs: Dict) -> Dict: | |
""" | |
Overview: | |
Execute parameter updates with ``'compute_critic'`` mode | |
Use encoded embedding tensor to predict output. | |
Arguments: | |
- ``obs``, ``action`` encoded tensors. | |
- mode (:obj:`str`): Name of the forward mode. | |
Returns: | |
- outputs (:obj:`Dict`): Q-value output and distribution. | |
ReturnKeys: | |
- q_value (:obj:`torch.Tensor`): Q value tensor with same size as batch size. | |
- distribution (:obj:`torch.Tensor`): Q value distribution tensor. | |
Shapes: | |
- obs (:obj:`torch.Tensor`): :math:`(B, N1)`, where B is batch size and N1 is ``obs_shape`` | |
- action (:obj:`torch.Tensor`): :math:`(B, N2)`, where B is batch size and N2 is``action_shape`` | |
- q_value (:obj:`torch.FloatTensor`): :math:`(B, N2)`, where B is batch size and N2 is ``action_shape`` | |
- distribution (:obj:`torch.FloatTensor`): :math:`(B, 1, N3)`, where B is batch size and N3 is ``num_atom`` | |
Examples: | |
>>> # Categorical mode | |
>>> inputs = {'obs': torch.randn(4,N), 'action': torch.randn(4,1)} | |
>>> model = QACDIST(obs_shape=(N, ),action_shape=1,action_space='regression', \ | |
... critic_head_type='categorical', n_atoms=51) | |
>>> q_value = model(inputs, mode='compute_critic') # q value | |
>>> assert q_value['q_value'].shape == torch.Size([4, 1]) | |
>>> assert q_value['distribution'].shape == torch.Size([4, 1, 51]) | |
""" | |
obs, action = inputs['obs'], inputs['action'] | |
assert len(obs.shape) == 2 | |
if len(action.shape) == 1: # (B, ) -> (B, 1) | |
action = action.unsqueeze(1) | |
x = torch.cat([obs, action], dim=1) | |
x = self.critic(x) | |
return {'q_value': x['logit'], 'distribution': x['distribution']} | |