Spaces:
Sleeping
Sleeping
from typing import Union, List | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from functools import reduce | |
from ding.utils import list_split, MODEL_REGISTRY | |
from ding.torch_utils import fc_block, MLP | |
from .q_learning import DRQN | |
class Mixer(nn.Module): | |
""" | |
Overview: | |
Mixer network in QMIX, which mix up the independent q_value of each agent to a total q_value. \ | |
The weights (but not the biases) of the Mixer network are restricted to be non-negative and \ | |
produced by separate hypernetworks. Each hypernetwork takes the globle state s as input and generates \ | |
the weights of one layer of the Mixer network. | |
Interface: | |
``__init__``, ``forward``. | |
""" | |
def __init__( | |
self, | |
agent_num: int, | |
state_dim: int, | |
mixing_embed_dim: int, | |
hypernet_embed: int = 64, | |
activation: nn.Module = nn.ReLU() | |
): | |
""" | |
Overview: | |
Initialize mixer network proposed in QMIX according to arguments. Each hypernetwork consists of \ | |
linear layers, followed by an absolute activation function, to ensure that the Mixer network weights are \ | |
non-negative. | |
Arguments: | |
- agent_num (:obj:`int`): The number of agent, such as 8. | |
- state_dim(:obj:`int`): The dimension of global observation state, such as 16. | |
- mixing_embed_dim (:obj:`int`): The dimension of mixing state emdedding, such as 128. | |
- hypernet_embed (:obj:`int`): The dimension of hypernet emdedding, default to 64. | |
- activation (:obj:`nn.Module`): Activation function in network, defaults to nn.ReLU(). | |
""" | |
super(Mixer, self).__init__() | |
self.n_agents = agent_num | |
self.state_dim = state_dim | |
self.embed_dim = mixing_embed_dim | |
self.act = activation | |
self.hyper_w_1 = nn.Sequential( | |
nn.Linear(self.state_dim, hypernet_embed), self.act, | |
nn.Linear(hypernet_embed, self.embed_dim * self.n_agents) | |
) | |
self.hyper_w_final = nn.Sequential( | |
nn.Linear(self.state_dim, hypernet_embed), self.act, nn.Linear(hypernet_embed, self.embed_dim) | |
) | |
# state dependent bias for hidden layer | |
self.hyper_b_1 = nn.Linear(self.state_dim, self.embed_dim) | |
# V(s) instead of a bias for the last layers | |
self.V = nn.Sequential(nn.Linear(self.state_dim, self.embed_dim), self.act, nn.Linear(self.embed_dim, 1)) | |
def forward(self, agent_qs, states): | |
""" | |
Overview: | |
Forward computation graph of pymarl mixer network. Mix up the input independent q_value of each agent \ | |
to a total q_value with weights generated by hypernetwork according to global ``states``. | |
Arguments: | |
- agent_qs (:obj:`torch.FloatTensor`): The independent q_value of each agent. | |
- states (:obj:`torch.FloatTensor`): The emdedding vector of global state. | |
Returns: | |
- q_tot (:obj:`torch.FloatTensor`): The total mixed q_value. | |
Shapes: | |
- agent_qs (:obj:`torch.FloatTensor`): :math:`(B, N)`, where B is batch size and N is agent_num. | |
- states (:obj:`torch.FloatTensor`): :math:`(B, M)`, where M is embedding_size. | |
- q_tot (:obj:`torch.FloatTensor`): :math:`(B, )`. | |
""" | |
bs = agent_qs.shape[:-1] | |
states = states.reshape(-1, self.state_dim) | |
agent_qs = agent_qs.view(-1, 1, self.n_agents) | |
# First layer | |
w1 = torch.abs(self.hyper_w_1(states)) | |
b1 = self.hyper_b_1(states) | |
w1 = w1.view(-1, self.n_agents, self.embed_dim) | |
b1 = b1.view(-1, 1, self.embed_dim) | |
hidden = F.elu(torch.bmm(agent_qs, w1) + b1) | |
# Second layer | |
w_final = torch.abs(self.hyper_w_final(states)) | |
w_final = w_final.view(-1, self.embed_dim, 1) | |
# State-dependent bias | |
v = self.V(states).view(-1, 1, 1) | |
# Compute final output | |
y = torch.bmm(hidden, w_final) + v | |
# Reshape and return | |
q_tot = y.view(*bs) | |
return q_tot | |
class QMix(nn.Module): | |
""" | |
Overview: | |
The neural network and computation graph of algorithms related to QMIX(https://arxiv.org/abs/1803.11485). \ | |
The QMIX is composed of two parts: agent Q network and mixer(optional). The QMIX paper mentions that all \ | |
agents share local Q network parameters, so only one Q network is initialized here. Then use summation or \ | |
Mixer network to process the local Q according to the ``mixer`` settings to obtain the global Q. | |
Interface: | |
``__init__``, ``forward``. | |
""" | |
def __init__( | |
self, | |
agent_num: int, | |
obs_shape: int, | |
global_obs_shape: int, | |
action_shape: int, | |
hidden_size_list: list, | |
mixer: bool = True, | |
lstm_type: str = 'gru', | |
activation: nn.Module = nn.ReLU(), | |
dueling: bool = False | |
) -> None: | |
""" | |
Overview: | |
Initialize QMIX neural network according to arguments, i.e. agent Q network and mixer. | |
Arguments: | |
- agent_num (:obj:`int`): The number of agent, such as 8. | |
- obs_shape (:obj:`int`): The dimension of each agent's observation state, such as 8 or [4, 84, 84]. | |
- global_obs_shape (:obj:`int`): The dimension of global observation state, such as 8 or [4, 84, 84]. | |
- action_shape (:obj:`int`): The dimension of action shape, such as 6 or [2, 3, 3]. | |
- hidden_size_list (:obj:`list`): The list of hidden size for ``q_network``, \ | |
the last element must match mixer's ``mixing_embed_dim``. | |
- mixer (:obj:`bool`): Use mixer net or not, default to True. If it is false, \ | |
the final local Q is added to obtain the global Q. | |
- lstm_type (:obj:`str`): The type of RNN module in ``q_network``, now support \ | |
['normal', 'pytorch', 'gru'], default to gru. | |
- activation (:obj:`nn.Module`): The type of activation function to use in ``MLP`` the after \ | |
``layer_fn``, if ``None`` then default set to ``nn.ReLU()``. | |
- dueling (:obj:`bool`): Whether choose ``DuelingHead`` (True) or ``DiscreteHead (False)``, \ | |
default to False. | |
""" | |
super(QMix, self).__init__() | |
self._act = activation | |
self._q_network = DRQN( | |
obs_shape, action_shape, hidden_size_list, lstm_type=lstm_type, dueling=dueling, activation=activation | |
) | |
embedding_size = hidden_size_list[-1] | |
self.mixer = mixer | |
if self.mixer: | |
self._mixer = Mixer(agent_num, global_obs_shape, embedding_size, activation=activation) | |
self._global_state_encoder = nn.Identity() | |
def forward(self, data: dict, single_step: bool = True) -> dict: | |
""" | |
Overview: | |
QMIX forward computation graph, input dict including time series observation and related data to predict \ | |
total q_value and each agent q_value. | |
Arguments: | |
- data (:obj:`dict`): Input data dict with keys ['obs', 'prev_state', 'action']. | |
- agent_state (:obj:`torch.Tensor`): Time series local observation data of each agents. | |
- global_state (:obj:`torch.Tensor`): Time series global observation data. | |
- prev_state (:obj:`list`): Previous rnn state for ``q_network``. | |
- action (:obj:`torch.Tensor` or None): The actions of each agent given outside the function. \ | |
If action is None, use argmax q_value index as action to calculate ``agent_q_act``. | |
- single_step (:obj:`bool`): Whether single_step forward, if so, add timestep dim before forward and\ | |
remove it after forward. | |
Returns: | |
- ret (:obj:`dict`): Output data dict with keys [``total_q``, ``logit``, ``next_state``]. | |
ReturnsKeys: | |
- total_q (:obj:`torch.Tensor`): Total q_value, which is the result of mixer network. | |
- agent_q (:obj:`torch.Tensor`): Each agent q_value. | |
- next_state (:obj:`list`): Next rnn state for ``q_network``. | |
Shapes: | |
- agent_state (:obj:`torch.Tensor`): :math:`(T, B, A, N)`, where T is timestep, B is batch_size\ | |
A is agent_num, N is obs_shape. | |
- global_state (:obj:`torch.Tensor`): :math:`(T, B, M)`, where M is global_obs_shape. | |
- prev_state (:obj:`list`): math:`(B, A)`, a list of length B, and each element is a list of length A. | |
- action (:obj:`torch.Tensor`): :math:`(T, B, A)`. | |
- total_q (:obj:`torch.Tensor`): :math:`(T, B)`. | |
- agent_q (:obj:`torch.Tensor`): :math:`(T, B, A, P)`, where P is action_shape. | |
- next_state (:obj:`list`): math:`(B, A)`, a list of length B, and each element is a list of length A. | |
""" | |
agent_state, global_state, prev_state = data['obs']['agent_state'], data['obs']['global_state'], data[ | |
'prev_state'] | |
action = data.get('action', None) | |
if single_step: | |
agent_state, global_state = agent_state.unsqueeze(0), global_state.unsqueeze(0) | |
T, B, A = agent_state.shape[:3] | |
assert len(prev_state) == B and all( | |
[len(p) == A for p in prev_state] | |
), '{}-{}-{}-{}'.format([type(p) for p in prev_state], B, A, len(prev_state[0])) | |
prev_state = reduce(lambda x, y: x + y, prev_state) | |
agent_state = agent_state.reshape(T, -1, *agent_state.shape[3:]) | |
output = self._q_network({'obs': agent_state, 'prev_state': prev_state, 'enable_fast_timestep': True}) | |
agent_q, next_state = output['logit'], output['next_state'] | |
next_state, _ = list_split(next_state, step=A) | |
agent_q = agent_q.reshape(T, B, A, -1) | |
if action is None: | |
# for target forward process | |
if len(data['obs']['action_mask'].shape) == 3: | |
action_mask = data['obs']['action_mask'].unsqueeze(0) | |
else: | |
action_mask = data['obs']['action_mask'] | |
agent_q[action_mask == 0.0] = -9999999 | |
action = agent_q.argmax(dim=-1) | |
agent_q_act = torch.gather(agent_q, dim=-1, index=action.unsqueeze(-1)) | |
agent_q_act = agent_q_act.squeeze(-1) # T, B, A | |
if self.mixer: | |
global_state_embedding = self._global_state_encoder(global_state) | |
total_q = self._mixer(agent_q_act, global_state_embedding) | |
else: | |
total_q = agent_q_act.sum(-1) | |
if single_step: | |
total_q, agent_q = total_q.squeeze(0), agent_q.squeeze(0) | |
return { | |
'total_q': total_q, | |
'logit': agent_q, | |
'next_state': next_state, | |
'action_mask': data['obs']['action_mask'] | |
} | |