Spaces:
Sleeping
Sleeping
from typing import Union, List | |
import torch | |
import numpy as np | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from functools import reduce | |
from ding.utils import list_split, squeeze, MODEL_REGISTRY | |
from ding.torch_utils.network.nn_module import fc_block, MLP | |
from ding.torch_utils.network.transformer import ScaledDotProductAttention | |
from ding.torch_utils import to_tensor, tensor_to_list | |
from .q_learning import DRQN | |
class QTran(nn.Module): | |
""" | |
Overview: | |
QTRAN network | |
Interface: | |
__init__, forward | |
""" | |
def __init__( | |
self, | |
agent_num: int, | |
obs_shape: int, | |
global_obs_shape: int, | |
action_shape: int, | |
hidden_size_list: list, | |
embedding_size: int, | |
lstm_type: str = 'gru', | |
dueling: bool = False | |
) -> None: | |
""" | |
Overview: | |
initialize QTRAN network | |
Arguments: | |
- agent_num (:obj:`int`): the number of agent | |
- obs_shape (:obj:`int`): the dimension of each agent's observation state | |
- global_obs_shape (:obj:`int`): the dimension of global observation state | |
- action_shape (:obj:`int`): the dimension of action shape | |
- hidden_size_list (:obj:`list`): the list of hidden size | |
- embedding_size (:obj:`int`): the dimension of embedding | |
- lstm_type (:obj:`str`): use lstm or gru, default to gru | |
- dueling (:obj:`bool`): use dueling head or not, default to False. | |
""" | |
super(QTran, self).__init__() | |
self._act = nn.ReLU() | |
self._q_network = DRQN(obs_shape, action_shape, hidden_size_list, lstm_type=lstm_type, dueling=dueling) | |
q_input_size = global_obs_shape + hidden_size_list[-1] + action_shape | |
self.Q = nn.Sequential( | |
nn.Linear(q_input_size, embedding_size), nn.ReLU(), nn.Linear(embedding_size, embedding_size), nn.ReLU(), | |
nn.Linear(embedding_size, 1) | |
) | |
# V(s) | |
self.V = nn.Sequential( | |
nn.Linear(global_obs_shape, embedding_size), nn.ReLU(), nn.Linear(embedding_size, embedding_size), | |
nn.ReLU(), nn.Linear(embedding_size, 1) | |
) | |
ae_input = hidden_size_list[-1] + action_shape | |
self.action_encoding = nn.Sequential(nn.Linear(ae_input, ae_input), nn.ReLU(), nn.Linear(ae_input, ae_input)) | |
def forward(self, data: dict, single_step: bool = True) -> dict: | |
""" | |
Overview: | |
forward computation graph of qtran network | |
Arguments: | |
- data (:obj:`dict`): input data dict with keys ['obs', 'prev_state', 'action'] | |
- agent_state (:obj:`torch.Tensor`): each agent local state(obs) | |
- global_state (:obj:`torch.Tensor`): global state(obs) | |
- prev_state (:obj:`list`): previous rnn state | |
- action (:obj:`torch.Tensor` or None): if action is None, use argmax q_value index as action to\ | |
calculate ``agent_q_act`` | |
- single_step (:obj:`bool`): whether single_step forward, if so, add timestep dim before forward and\ | |
remove it after forward | |
Return: | |
- ret (:obj:`dict`): output data dict with keys ['total_q', 'logit', 'next_state'] | |
- total_q (:obj:`torch.Tensor`): total q_value, which is the result of mixer network | |
- agent_q (:obj:`torch.Tensor`): each agent q_value | |
- next_state (:obj:`list`): next rnn state | |
Shapes: | |
- agent_state (:obj:`torch.Tensor`): :math:`(T, B, A, N)`, where T is timestep, B is batch_size\ | |
A is agent_num, N is obs_shape | |
- global_state (:obj:`torch.Tensor`): :math:`(T, B, M)`, where M is global_obs_shape | |
- prev_state (:obj:`list`): math:`(B, A)`, a list of length B, and each element is a list of length A | |
- action (:obj:`torch.Tensor`): :math:`(T, B, A)` | |
- total_q (:obj:`torch.Tensor`): :math:`(T, B)` | |
- agent_q (:obj:`torch.Tensor`): :math:`(T, B, A, P)`, where P is action_shape | |
- next_state (:obj:`list`): math:`(B, A)`, a list of length B, and each element is a list of length A | |
""" | |
agent_state, global_state, prev_state = data['obs']['agent_state'], data['obs']['global_state'], data[ | |
'prev_state'] | |
action = data.get('action', None) | |
if single_step: | |
agent_state, global_state = agent_state.unsqueeze(0), global_state.unsqueeze(0) | |
T, B, A = agent_state.shape[:3] | |
assert len(prev_state) == B and all( | |
[len(p) == A for p in prev_state] | |
), '{}-{}-{}-{}'.format([type(p) for p in prev_state], B, A, len(prev_state[0])) | |
prev_state = reduce(lambda x, y: x + y, prev_state) | |
agent_state = agent_state.reshape(T, -1, *agent_state.shape[3:]) | |
output = self._q_network({'obs': agent_state, 'prev_state': prev_state, 'enable_fast_timestep': True}) | |
agent_q, next_state = output['logit'], output['next_state'] | |
next_state, _ = list_split(next_state, step=A) | |
agent_q = agent_q.reshape(T, B, A, -1) | |
if action is None: | |
# For target forward process | |
if len(data['obs']['action_mask'].shape) == 3: | |
action_mask = data['obs']['action_mask'].unsqueeze(0) | |
else: | |
action_mask = data['obs']['action_mask'] | |
agent_q[action_mask == 0.0] = -9999999 | |
action = agent_q.argmax(dim=-1) | |
agent_q_act = torch.gather(agent_q, dim=-1, index=action.unsqueeze(-1)) | |
agent_q_act = agent_q_act.squeeze(-1) # T, B, A | |
hidden_states = output['hidden_state'].reshape(T * B, A, -1) | |
action = action.reshape(T * B, A).unsqueeze(-1) | |
action_onehot = torch.zeros(size=(T * B, A, agent_q.shape[-1]), device=action.device) | |
action_onehot = action_onehot.scatter(2, action, 1) | |
agent_state_action_input = torch.cat([hidden_states, action_onehot], dim=2) | |
agent_state_action_encoding = self.action_encoding(agent_state_action_input.reshape(T * B * A, | |
-1)).reshape(T * B, A, -1) | |
agent_state_action_encoding = agent_state_action_encoding.sum(dim=1) # Sum across agents | |
inputs = torch.cat([global_state.reshape(T * B, -1), agent_state_action_encoding], dim=1) | |
q_outputs = self.Q(inputs) | |
q_outputs = q_outputs.reshape(T, B) | |
v_outputs = self.V(global_state.reshape(T * B, -1)) | |
v_outputs = v_outputs.reshape(T, B) | |
if single_step: | |
q_outputs, agent_q, agent_q_act, v_outputs = q_outputs.squeeze(0), agent_q.squeeze(0), agent_q_act.squeeze( | |
0 | |
), v_outputs.squeeze(0) | |
return { | |
'total_q': q_outputs, | |
'logit': agent_q, | |
'agent_q_act': agent_q_act, | |
'vs': v_outputs, | |
'next_state': next_state, | |
'action_mask': data['obs']['action_mask'] | |
} | |