Spaces:
Sleeping
Sleeping
import pytest | |
import torch | |
from ding.model.template.atoc import ATOCActorNet, ATOC | |
from ding.torch_utils import is_differentiable | |
class TestATOC: | |
def test_actor_net(self): | |
B, A, obs_dim, act_dim, thought_dim = 6, 5, 12, 6, 14 | |
torch.autograd.set_detect_anomaly(True) | |
model = ATOCActorNet(obs_dim, thought_dim, act_dim, A, True, 2, initiator_threshold=0.001) | |
for i in range(10): | |
out = model.forward(torch.randn(B, A, obs_dim)) | |
assert out['action'].shape == (B, A, act_dim) | |
assert out['group'].shape == (B, A, A) | |
loss1 = out['action'].sum() | |
if i == 0: | |
is_differentiable(loss1, model, print_instead=True) | |
else: | |
loss1.backward() | |
def test_qac_net(self): | |
B, A, obs_dim, act_dim, thought_dim = 6, 5, 12, 6, 14 | |
model = ATOC(obs_dim, act_dim, thought_dim, A, True, 2, 2) | |
# test basic forward path | |
optimize_critic = torch.optim.SGD(model.critic.parameters(), 0.1) | |
obs = torch.randn(B, A, obs_dim) | |
act = torch.rand(B, A, act_dim) | |
out = model({'obs': obs, 'action': act}, mode='compute_critic') | |
assert out['q_value'].shape == (B, A) | |
q_loss = out['q_value'].sum() | |
q_loss.backward() | |
optimize_critic.step() | |
out = model(obs, mode='compute_actor', get_delta_q=True) | |
assert out['delta_q'].shape == (B, A) | |
assert out['initiator_prob'].shape == (B, A) | |
assert out['is_initiator'].shape == (B, A) | |
optimizer_act = torch.optim.SGD(model.actor.parameters(), 0.1) | |
optimizer_att = torch.optim.SGD(model.actor.attention.parameters(), 0.1) | |
obs = torch.randn(B, A, obs_dim) | |
delta_q = model(obs, mode='compute_actor', get_delta_q=True) | |
attention_loss = model(delta_q, mode='optimize_actor_attention') | |
optimizer_att.zero_grad() | |
loss = attention_loss['loss'] | |
loss.backward() | |
optimizer_att.step() | |
weights = dict(model.actor.named_parameters()) | |
output = model(obs, mode='compute_actor') | |
output['obs'] = obs | |
q_loss = model(output, mode='compute_critic') | |
loss = q_loss['q_value'].sum() | |
before_update_weights = model.actor.named_parameters() | |
optimizer_act.zero_grad() | |
loss.backward() | |
optimizer_act.step() | |